ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Линейные и разветвляющиеся структуры

Загрузка...

Наиболее простыми для понимания и использования являются линейные структуры. Первоначально с их помощью можно описать любой вычислительный процесс. Предписания, которые обычно содержит такой алгоритм, представлены на рис. 3.

Предписание «Список данных» содержит сведения об именах и типах данных, обрабатываемых в этом алгоритме. Предписание «Ввод (исходные данные)» определяет, какие исходные данные и в каком порядке должны быть введены в ЭВМ. Предписание «Вывод (исходные данные)» позволяет проконтролировать правильность ввода информации. Предписания 5 и 6 позволяют получить требуемые результаты и выдать их пользователю. Рассматриваемый алгоритм относится к линейным алгоритмам.

Рис. 3. Типовой алгоритм вычислительного процесса

 

Линейным называется алгоритм (фрагмент алгоритма, см. рис. 8,а), в котором отдельные предписания выполняются в естественном порядке (в порядке записи) независимо от значений исходных данных и промежуточных результатов.

Линейной, например, является последовательность вычислений по какой-либо формуле с помощью карманного калькулятора. Более подробно следует рассмотреть запись математических формул в виде конструкции Х:=А; которая читается следующим образом: «Переменной X присвоить значение, равное А». В этой формуле X — переменная; А может быть любым, сколь угодно сложным математическим выражением. В процессе решения задачи на ЭВМ выражение А вычисляется, и его значение присваивается содержимому ячейки памяти, отведенной для хранения переменной X. При этом переменная X теряет свое значение и приобретает новое. Таким образом, символ «:=» употребляется при изображении алгоритмов в значении «присвоить». Как следствие этого, бессмысленное с точки зрения алгебры выражение Х:=Х+5; является широко распространенным в программировании и означает, что к текущему значению переменной X добавляется число 5, после чего X теряет свое старое значение и приобретает новое, которое на 5 больше предыдущего.

Линейные фрагменты используются на первых этапах детализации задачи. Однако только в редких случаях все предписания такого алгоритма являются элементарными. Так, например, предписание 5 на рис. 9 не является элементарным и требует дальнейшей детализации. Поэтому назначение блока 5 предусматривает сверху свободное место для записи координат блока, в котором будет раскрываться смысл детализируемого участка.

Часто для дальнейшей детализации алгоритма используются ветвящиеся структуры (рис. 4).

 
 

Ветвящимся (разветвляющимся) называется алгоритм (фрагмент алгоритма), в котором в зависимости от исходных данных или промежуточных результатов вычисления реализуется по одному из нескольких заранее предусмотренных (возможных) направлений. Такие направления называются ветвями вычислений.

Если (условие) То операторы ветви 1; Иначе операторы ветви 2; Конец-Если; Если (условие) То операторы ветви; Конец-Если; Если (условие) То Иначе операторы ветви; Конец-Если;

 

Рис. 4.Ветвящаяся структура: а — стандартная схема; б, в — частные случаи ветвления

 

Каждая ветвь может быть любой степени сложности, а может вообще не содержать предписаний (как это показано на рис. 4, б, в), т.е. быть «вырожденной». Выбор той или иной ветви осуществляется в зависимости от результата проверки условия. В каждом конкретном случае алгоритм реализуется только по одной ветви, а выполнение остальных исключается. В схемах, приведенных на рис. 4, положительный исход проверки условия обозначен знаком «+» (да, true, истина, «1»), а отрицательный — знаком «–» (нет, false, ложь, «0»).

При составлении алгоритма в виде псевдокодов линии связи заменяются словами «Идти» или «Перейти» с указанием номера предписания (оператора), которое должно выполняться на следующем шаге алгоритма. Горизонтальная линия, объединяющая ветви «+» и «–», в псевдокодах имеет аналог «Конец-Если». После фразы «Конец-Если» можно указать номер псевдокода, в котором записано проверяемое условие.

Использование данной конструкции при записи алгоритма в псевдокодах позволяет легко определить место окончания разветвления (продолжения основного алгоритма).

Рис. 5.Выбор варианта: а — структура выбора варианта; б, в — условное обозначение

 

На практике часто встречаются задачи, когда нужно выбрать не одно из двух, а одно из трех или более предписаний. Такую структуру называют выбором варианта, ее также можно построить из линейных и ветвящихся структур, как показано на рис. 5.

В такой структуре (см. рис. 5) сначала вычисляется значение выражения, стоящего в операторе присваивания. В зависимости от значения переменной i затем будет выбран либо 1-й, либо 2-й, либо 3-й, либо 4-й оператор. Число выбираемых операторов в такой структуре не ограничено.

 

Загрузка...

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти