ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


МЕТОДЫ ПОСТРОЕНИЯ АЛГОРИТМОВ

Основные понятия структурного программирования

На первых ЭВМ с «тесной» памятью и небольшим быстродействием основным показателем качества программы была ее экономичность по занимаемой памяти и времени счета. Чем программа получалась короче, тем класс программиста считался выше. Такое сокращение программы часто давалось большими усилиями. Иногда программа получалась настолько «хитрой», что могла «перехитрить» самого автора. Возвращаясь через некоторое время к собственной программе, желая что-то изменить, программист мог запутаться в ней, забыв свою «гениальную идею».

Так как вероятность выхода из строя сложного технического устройства больше, чем простого, очень сложный алгоритм всегда увеличивает вероятность ошибки в программе.

В процессе изготовления программного продукта программист должен пройти определенные этапы.

 

На стадии проектирования строится алгоритм будущей программы, например, в виде блок-схемы. Кодирование — это составление текста программы на языке программирования. Отладка осуществляется с помощью тестов, т. е. программа выполняется с некоторым заранее продуманным набором исходных данных, для которого известен результат. Чем сложнее программа, тем большее число тестов требуется для ее проверки. Очень «хитрую» программу трудно протестировать исчерпывающим образом. Всегда есть шанс, что какой-то «подводный камень» остался незамеченным.

С ростом памяти и быстродействия ЭВМ, с совершенствованием языков программирования и трансляторов с этих языков проблема экономичности программы становится менее острой. Все более важной качественной характеристикой программ становится их простота, наглядность, надежность. С появлением машин третьего поколения эти качества стали основными.

 

В конце 60-х — начале 70-х гг. XX столетия вырабатывается дисциплина, которая получила название структурного программирования. Ее появление и развитие связаны с именами Э. В. Дейкстры, Х.Д.Милса, Д. Е. Кнута и других ученых. Структурное программирование до настоящего времени остается основой технологии программирования. Соблюдение его принципов позволяет программисту быстро научиться писать ясные, безошибочные, надежные программы.

В основе структурного программирования лежит теорема, которая была строго доказана в теории программирования. Суть ее в том, что алгоритм для решения любой логической задачи можно составить только из структур «следование, ветвление, цикл». Их называют базовыми алгоритмическими структурами. Из предыдущих разделов учебника вы уже знакомы с этими структурами. По сути дела, мы и раньше во всех рассматриваемых примерах программ придерживались принципов структурного программирования.

Следование — это линейная последовательность действий:

 

Каждый блок может содержать в себе как простую команду, так и сложную структуру, но обязательно должен иметь один вход и один выход.

Ветвление — алгоритмическая альтернатива. Управление передается одному из двух блоков в зависимости от истинности или ложности условия. Затем происходит выход на общее продолжение:

 

Неполная форма ветвления имеет место, когда на ветви «нет» пусто:

 

Цикл — повторение некоторой группы действий по условию. Различаются два типа цикла. Первый — цикл с предусловием (цикл-пока):

 

Пока условие истинно, выполняется серия, образующая тело цикла.

Второй тип циклической структуры — цикл с постусловием (цикл-до):

 

Здесь тело цикла предшествует условию цикла. Тело цикла повторяет свое выполнение, если условие ложно. Повторение кончается, когда условие станет истинным.

Теоретически необходимым и достаточным является лишь первый тип цикла — цикл с предусловием. Любой циклический алгоритм можно построить с его помощью. Это более общий вариант цикла, чем цикл-до. В самом деле, тело цикла-до хотя бы один раз обязательно выполнится, так как проверка условия происходит после завершения его выполнения. А для цикла-пока возможен такой вариант, когда тело цикла не выполнится ни разу. Поэтому в любом языке программирования можно было бы ограничиться только циклом-пока

Однако в ряде случаев применение цикла-до оказывается более удобным, и поэтому он используется.

Иногда в литературе структурное программирование называют программированием без goto. Действительно, при таком подходе нет места безусловному переходу. Неоправданное использование в программах оператора goto лишает ее структурности, а значит, всех связанных с этим положительных свойств: прозрачности и надежности алгоритма. Хотя во всех процедурных языках программирования этот оператор присутствует, однако, придерживаясь структурного подхода, его употребления следует избегать.

Сложный алгоритм состоит из соединенных между собой базовых структур. Соединяться эти структуры могут двумя способами: последовательным и вложенным. Если блок, составляющий тело цикла, сам является циклической структурой, то, значит, имеют место вложенные циклы. В свою очередь, внутренний цикл может иметь внутри себя еще один цикл и т.д. В связи с этим вводится представление о глубине вложенности циклов. Точно так же и ветвления могут быть вложенными друг в друга.

Структурный подход требует соблюдения стандарта в изображении блок-схем алгоритмов. Чертить их нужно так, как это делалось во всех приведенных примерах. Каждая базовая структура должна иметь один вход и один выход. Нестандартно изображенная блок-схема плохо читается, теряется наглядность алгоритма. Вот несколько примеров структурных блок-схем алгоритмов (рис. 47).

 

Такие блок-схемы легко читаются. Их структура хорошо воспринимается зрительно. Структуре каждого алгоритма можно дать название. У приведенных на рис. 47 блок-схем следующие названия:

1. Вложенные ветвления. Глубина вложенности равна единице.

2. Цикл с вложенным ветвлением.

3. Вложенные циклы-пока. Глубина вложенности — единица.

4. Ветвление с вложенной последовательностью ветвлений на положительной ветви и с вложенным циклом-пока на отрицательной ветви.

5. Следование ветвления и цикла-до.

6. Вложенные циклы. Внешний — цикл-пока, внутренний — цикл-до.

 

Языки программирования Паскаль и Си называют языками структурного программирования. В них есть все необходимые управляющие конструкции для структурного построения программы. Наглядность такому построению придает структуризация внешнего вида текста программы. Основной используемый для этого прием — сдвиги строк, которые должны подчиняться следующим правилам:

• конструкции одного уровня вложенности записываются на одном вертикальном уровне (начинаются с одной позиции в строке);

• вложенная конструкция записывается смещенной по строке на несколько позиций вправо относительно внешней для нее конструкции.

Для приведенных выше блок-схем структура текста программы на Паскале должна быть следующей:

 

 

Структурная методика алгоритмизации — это не только форма описания алгоритма, но это еще и способ мышления программиста. Создавая алгоритм, нужно стремиться составлять его из стандартных структур. Если использовать строительную аналогию, можно сказать, что структурная методика построения алгоритма подобна сборке здания из стандартных секций в отличие от складывания по кирпичику.

Еще одним важнейшим технологическим приемом структурного программирования является декомпозиция решаемой задачи на подзадачи — более простые с точки зрения программирования части исходной задачи. Алгоритмы решения таких подзадач называются вспомогательными алгоритмами. В связи с этим возможны два пути в построении алгоритма:

«сверху вниз»: сначала строится основной алгоритм, затем вспомогательные алгоритмы;

«снизу вверх»: сначала составляются вспомогательные алгоритмы, затем основной.

Первый подход еще называют методом последовательной детализации, второй — сборочным методом.

Сборочный метод предполагает накопление и использование библиотек вспомогательных алгоритмов, реализованных в языках программирования в виде подпрограмм, процедур, функций. При последовательной детализации сначала строится основной алгоритм, а затем в него вносятся обращения к вспомогательным алгоритмам первого уровня. После этого составляются вспомогательные алгоритмы первого уровня, в которых могут присутствовать обращения к вспомогательным алгоритмам второго уровня, и т.д. Вспомогательные алгоритмы самого нижнего уровня состоят только из простых команд.

Метод последовательной детализации применяется в любом конструировании сложных объектов. Это естественная логическая последовательность мышления конструктора: постепенное углубление в детали. В нашем случае речь идет тоже о конструировании, но только не технических устройств, а алгоритмов. Достаточно сложный алгоритм другим способом построить практически невозможно.

Методика последовательной детализации позволяет организовать работу коллектива программистов над сложным проектом. Например, руководитель группы строит основной алгоритм, а разработку вспомогательных алгоритмов и написание соответствующих подпрограмм поручает своим сотрудникам. Участники группы должны лишь договориться об интерфейсе (т. е. взаимосвязи) между разрабатываемыми программными модулями, а внутренняя организация программы — личное дело программиста.

Пример разработки программы методом последовательной детализации будет рассмотрен в следующем разделе.

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти