ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Прочитайте и переведите на русский язык следующие словосочетания, обращая внимание на Gerund и

НАНОТЕХНОЛОГИИ

 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для аудиторных работ к учебному материалу

на английском языке для студентов направления

28.03.01 «Нанотехнология и микросистемная техника» (профиль «Компоненты микро - и наносистемной техники») очной формы обучения

 

Часть I

 

 

 

 

Воронеж 2014

Составители: ст. преп. М.Т. Жукова

преп. Н.В. Аленькова

ст. преп. Н.И. Бородина

 

 

Нанотехнологии: методические указания для аудиторных работ к учебному материалу на английском языке для студентов направления 28.03.01 «Нанотехнология и микросистемная техника» (профиль «Компоненты микро- и наносистемной техники» очной формы обучения. Ч. 1 / ФГБОУ ВПО «Воронежский государственный технический университет»; сост. М.Т. Жукова, Н.В. Аленькова, Н.И. Бородина. Воронеж, 2014. 24 с.

 

Методические указания ориентированы на развитие навыков самостоятельного чтения, совершенствования коммуникативных навыков и умений профессионально-направленного общения. При подборе специальных текстов учитывалась программа курса по специальности. Задания к текстам способствуют снятию лексических трудностей, формированию навыков реферирования.

Предназначены для студентов 1 курса.

 

Библиогр.:

 

Рецензент канд. филол. наук, доц. Е.Л.Сарафанникова

Ответственный за выпуск зав. кафедрой д-р филол. наук, проф. В.А. Федоров

 

Печатается по решению редакционно-издательского совета Воронежского государственного технического университета

 

© ФГБОУ ВПО «Воронежский

государственный технический

университет», 2014

НАНОТЕХНОЛОГИИ

 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

 

для аудиторных работ к учебному материалу

на английском языке для студентов направления

28.03.01 «Нанотехнология и микросистемная техника» (профиль «Компоненты микро- и наносистемной техники» очной формы обучения

 

Часть 1

 

Составители:

Жукова Марина Тихоновна

Аленькова Наталия Валерьевна

Бородина Нина Ивановна

 

 

В авторской редакции

 

 

Компьютерный набор М.Т. Жуковой

 

Подписано в печать 12.12.2014.

Формат 60x84/116. Бумага для множительных аппаратов.

Усл. печ. л. 1,7. Уч.- изд. л. 1,5. Тираж экз. «С»

Зак. №

 

 

ФГБОУ ВПО «Воронежский государственный технический

университет»

394026 Воронеж, Московский просп., 14

 

UNIT 1

1. Изучите следующие слова и словосочетания:

exhibit – проявлять;

behavior – поведение;

benefit – преимущества;

advancement – продвижение;

epitaxy – эпитаксия, эпиктаксиальное выращивание (кристаллов);

deposition - осаждение, напыление;

nanoscales - наномасштабы;

stain-resistant – устойчивый к травлению;

embrace – заключать в себе, охватывать;

exploit – использовать;

apply – применять, прикладывать;

grasp – захватить, схватить;

precisely – точно;

arrange – компановать, распределять;

sequence – последовательность;

solution – раствор;

bind – притягивать, затягивать;

radical – радикал;

carbine – карбен;

alkynes – алкины, углероды ацетиленового ряда;

workpiece – обрабатываемая деталь, образец;

convergence – конвергенция.

2. Прочитайте текст и выделите основную идею:

Nanotechnology

Nanotechnology is the manipulation of atoms, molecules, and materials to form structures on the scale of nanometres (billionths of a metre). These nanostructures typically exhibit new properties or behaviors due to quantum mechanics. In 1959 Richard Feynman first pointed out some potential quantum benefits of miniaturization. A major advancement was the invention of molecular-beam epitaxy by Alfred Cho and John Arthur at Bell Laboratories in 1968 and its development in the 1970s, which enabled the controlled deposition of single atomic layers. Scientists have made some progress at building devices, including computer components, at nanoscales. Faster progress has occurred in the incorporation of nanomaterials in other products, such as stain-resistant coatings for clothes and invisible sunscreens.

Systems for transforming matter, energy, and information, based on nanometer-scale components with precisely defined molecular features. The term nanotechnology has also been used more broadly to refer to techniques that produce or measure features less than 100 nanometers in size; this meaning embraces advanced microfabrication and metrology. Although complex systems with precise molecular features cannot be made with existing techniques, they can be designed and analyzed. Studies of nanotechnology in this sense remain theoretical, but are intended to guide the development of practical technological systems.

Nanotechnology based on molecular manufacturing requires a combination of familiar chemical and mechanical principles in unfamiliar applications. Molecular manufacturing can exploit mechanosynthesis, that is, using mechanical devices to guide the motions of reactive molecules. By applying the conventional mechanical principle of grasping and positioning to conventional chemical reactions, mechanosynthesis can provide an unconventional ability to cause molecular changes to occur at precise locations in a precise sequence. Reliable positioning is required in order for mechanosynthetic processes to construct objects with millions to billions of precisely arranged atoms.

Mechanosynthetic systems are intended to perform several basic functions. Their first task is to acquire raw materials from an externally provided source, typically a liquid solution containing a variety of useful molecular species. The second task is to process these raw materials through steps that separate molecules of different kinds, bind them reliably to specific sites, and then (often) transform them into highly active chemical species, such as radicals, carbenes, and strained alkenes and alkynes. Finally, mechanical devices can apply these bound, active species to a workpiece in a controlled position and orientation and can deposite or remove a precise number of atoms of specific kinds at specific locations.

Several technologies converge with nanotechnologies, the most important being miniaturization of semiconductor structures, driven by progress in microelectronics. More directly relevant are efforts to extend chemical synthesis to the construction of larger and more complex molecular objects. Protein engineering and supramolecular chemistry are active fields that exploit weak intermolecular forces to organize small parts into larger structures. Scanning probe microscopes are used to move individual atoms and molecules.

3. Переведите следующие словосочетания: scale of nanometers; new properties; potential quantum benefits; molecular-beam epitaxy; the controlled deposition; stain-resistant coatings; invisible sunscreens; nanometer-scale components; practical technological systems; unfamiliar applications; conventional mechanical principle; conventional chemical reactions; supramolecular chemistry; intermolecular forces.

4. В следующих предложениях поставьте глаголы в скобках в необходимую форму:

1. First potential quantum benefits of miniaturization (point) out by Richard Feynman in 1959.

2. The controlled deposition of single atomic layers (enable) because if the invention of molecular-beam epitaxy by Alfred Cho and John Arthur at Bell Laboratories.

3. Later scientists (make) some progress at building devices.

4. The term nanotechnology (use) more broadly to refer to techniques that produce or measure features less than 100 nanometers in size.

5. Studies of nanotechnology (intend) to guide the development of practical technological systems.

6. Reliable positioning of molecules (require) to construct objects with millions to billions of precisely arranged atoms.

5. Прочитайте и переведите на русский язык следующие словосочетания, обращая внимание на Participle II:

the progress occurred in the incorporation of nanomaterials in other products;

systems based on nanometer-scale components;

nanotechnology based on molecular manufacturing; several technologies driven by progress in microelectronics;

scanning probe microscopes used to move individual atoms and molecules;

the motions of reactive molecules guided by using mechanical devices.

6. Образуйте Participle II от следующих глаголов и переведите их на русский язык:

to manipulate; to exhibit; to enable; to build; to control; to separate; to construct; to break; to transform; to create; to design; to apply; to fulfill; to accomplish; to require; to perform; to become.

7. Переведите следующие словосочетания на английский язык:

молекулярно – лучевое эпиктаксиальное выращивание; новые свойства; преимущества миниатюризации; контролируемое напыление; стойкое к травлению покрытие; невидимые солнечные экраны; модернизированная микрообработка; чрезвычайно активные химические образцы.

8. Ответьте на следующие вопросы по содержанию текста:

1. What does the term “ nanotechnology” mean?

2. Who first pointed out some potential quantum benefits of

miniaturization?

3. What did Alfred Cho and John Arthur invent at Bell

Laboratories in 1968?

4. What did the invention of molecular-beam epitaxy enable?

5. What spheres of life could this invention be widely used in?

6. What does nanotechnology based on molecular

manufacturing require?

7. What is mechanosynthesis and what does it provide?

8. What are the main functions of mechanosynthetic

systems?

9. What technologies converge with the appearance of nanotechnologies?

UNIT 2

1. Изучите следующие слова и словосочетания:

quantum dots квантовые точки;

nanowires – нанопровода;

nanorods – наностержень;

optoelectronics – оптикоэлектроника;

tune – приспосабливать, приводить в соответствие;

solar cell – солнечная батарея;

photoinduction – фотоиндукция;

quantum confinement - "квантовая ловушка для электрона", квантовая локализация;

surface plasmon resonance - резонанс поверхностного плазмона;

cluster - пучок; пачка; связка; блок;

malleability – пластичность;

ductility – пластичность;

suspension - (при)остановка; временное прекращение, взвесь, суспензия;

solvent – растворитель;

diffusion - диффузия; распространение путём диффузии;

sintering - агломерация, обжиг агломерационный

melting temperature - температура плавления.

2. Догадайтесь о значении этих слов и словосочетаний:

Inorganic nanomaterial; optical and electrical properties; synthetic techniques; optoelectronic device; photoinduced process; organic/inorganic nanomaterial composite systems; chemical catalysts; nanomaterial-based catalysts; size-dependent properties; surface plasmon resonance; ferroelectric materials.

3. Прочитайте текст и переведите:

 

Nanoparticles

 

Inorganic nanomaterials, (e.g. quantum dots, nanowires and nanorods) because of their interesting optical and electrical properties, could be used in optoelectronics. Furthermore, the optical and electronic properties of nanomaterials which depend on their size and shape can be tuned via synthetic techniques. There are the possibilities to use those materials in organic material based optoelectronic devices such as Organic solar cells, OLEDs etc. The operating principles of such devices are governed by photoinduced processes like electron transfer and energy transfer. The performance of the devices depends on the efficiency of the photoinduced process responsible for their functioning. Therefore, better understanding of those photoinduced processes in organic/inorganic nanomaterial composite systems is necessary in order to use them in organic optoelectronic devices.

Nanoparticles or nanocrystals made of metals, semiconductors, or oxides are of particular interest for their mechanical, electrical, magnetic, optical, chemical and other properties. Nanoparticles have been used as quantum dots and as chemical catalysts such as nanomaterial-based catalysts.

Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale this is often not the case. Size-dependent properties are observed such as quantum confinement in semiconductor particles, surface plasmon resonance in some metal particles and superparamagnetism in magnetic materials.

Nanoparticles exhibit a number of special properties relative to bulk material. For example, the bending of bulk copper (wire, ribbon, etc.) occurs with movement of copper atoms/clusters at about the 50 nm scale. Copper nanoparticles smaller than 50 nm are considered super hard materials that do not exhibit the same malleability and ductility as bulk copper. The change in properties is not always desirable. Ferroelectric materials smaller than 10 nm can switch their magnetisation direction using room temperature thermal energy, thus making them useless for memory storage. Suspensions of nanoparticles are possible because the interaction of the particle surface with the solvent is strong enough to overcome differences in density, which usually result in a material either sinking or floating in a liquid. Nanoparticles often have unexpected visual properties because they are small enough to confine their electrons and produce quantum effects. For example gold nanoparticles appear deep red to black in solution.

The often very high surface area to volume ratio of nanoparticles provides a tremendous driving force for diffusion, especially at elevated temperatures. Sintering is possible at lower temperatures and over shorter durations than for larger particles. This theoretically does not affect the density of the final product, though flow difficulties and the tendency of nanoparticles to agglomerate do complicate matters. The surface effects of nanoparticles also reduces the incipient melting temperature.

UNIT 3

 

1. Изучите следующие слова и словосочетания:

аnticipate – ожидать, предвосхищать;

feasible - осуществимый, выполнимый;

neural-like – нейроподобный;

gear - устройство; механизм; установка;

cog - зубец,выступ;

oscillating – осциллирующий; колебательный;

tissue – ткань;

weapon – оружие;

depict – изображать; обрисовывать;

decipher – распознать; разгадать;

encrypt – шифровать; кодировать;

impose – прикладывать; накладывать.

2. Прочитайте эти слова и словосочетания и догадайтесь об их значении:

microelectronic equipment; nanotechnology revolution; quantum variance; molecule sensors; neural-like networks; radical transformation; nano-technology motors; potential nano-level manipulation; genomic medicine and immunology; information processing science; quantum cryptography systems; molecular beam epitaxy; metallo-organic chemical vapor deposition.

 

3. Прочитайте текст и переведите:

A B

heavily divide

permanent easy

high cheap

quick easily

solid easy

external temporary

expensive liquid

complex internal

multiply slow

 

Nanomedicine

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future. The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging. Nanomedicine research is receiving funding from the US National Institutes of Health, including the funding in 2005 of a five-year plan to set up four nanomedicine centers.

 

UNIT 4

1. Изучите следующие слова и словосочетания:

a term – термин, понятие

to refer to – относиться к

intersection – область пересечения, скрещивание

related technologies – родственные (взаимосвязанные) технологии

merger – объединение, слияние

to enhance – укреплять

to allow smb to do smth – позволить кому-либо сделать что-либо

nanoparticle - наночастица

biologically inspired – биотехнологический, на основе биотехнологий

peptoid nanosheet – пептоидный нанолист

to refine application – совершенствовать практическое применение

tissue — ткань

concerning - касающийся

cantilever — подвешенный, выдвижной

array sensor — матричный датчик

living cell — живая клетка, биоэлемент

oxidation state — состояние окисления

aqueous phase — водная фаза

environmentally benign condition — экологически-благоприятные условия

sustainable development — стабильное развитие

 

2. Найдите русские эквиваленты перевода к следующим словам и словочетаниям:

phenomenon (мн.ч phenomena) часто

to occur подход

approach возможность

objective включать в себя; задействовать

to involve проявлять; происходить

frequently исследовать

purpose задача

opportunity исследование

to explore явление

research цель

3. Просмотрите текст “Nanobiotechnology” из задания №5 и найдите слова со следующими приставками:

BIO- NANO-

 

-biology - nanoparticles

4. Просмотрите текст “Nanobiotechnology” из задания №5 и подберите синонимы к следующим словам:

For example, discipline – subject.

appeared - …e.......................................

to invent - …c.......................................

close - ….r............................................

scholar/ explorer - …s..........................

problem - ….i.......................................

exploration - ...r....................................

aim/ task - ….o.....................................

utilization - ...a.....................................

 

5. Прочитайте и переведите текст:

NANOBIOTECHNOLOGY

 

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies. Bionanotechnology generally refers to the study of how the goals of nanotechnology can be guided by studying how biological "machines" work and adapting these biological motifs into improving existing nanotechnologies or creating new ones. Nanobiotechnology, on the other hand, refers to the ways that nanotechnology is used to create devices to study biological systems.

This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include: nanodevices, nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created. However, as with nanotechnology and biotechnology, bionanotechnology has many potential ethical issues associated with it.

The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as peptoid nanosheets, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native biomolecules, biological membranes, and tissues is also a major topic for the nanobiology researchers. Other topics concerning nanobiology include the use of cantilever array sensors and the application of nanophotonics for manipulating molecular processes in living cells.

Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.

6. Ответьте на следующие вопросы:

1. Can you explain the meaning of the words “nanobiotechnology”, “bionanotechnology”, and “nanobiology”? Can we say that all these terms are closely related?

  1. What does nanobiotechnology as a discipline help to indicate?
  2. What does the technical approach to biology allow scientists to do?
  3. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created, doesn't it?
  4. Do the most important objectives of nanobiology involve applying nanotools to relevant medical/biological problems and refining these application? Can you give us the examples of nanotools?
  5. What are the main objectives concerning nanobiology?
  6. Does the use of microorganisms or chemical substances help to synthesize functional nanoparticles?

 

7. Составьте аннотацию текста “Nanobiotechnology”.

 

UNIT 5

1. Изучите следующие слова и словосочетания:

to treat – рассматривать/ изучать/ лечить

to generate cures – назначать лечение

cultured bladder — выращенный в искусственных условиях мочевой пузырь

a young embryo – зародыш в первые недели развития, плод

stem cell treatment — лечение стволовыми клетками

harsh chemicals — агрессивные химикаты

to be quenched — гаситься (о люминисценции)

to encounter — встречаться с, сталкиваться с

to detect = to track down — находить, обнаруживать

metabolites — метаболиды (продукты обмена веществ)

to fix disease — лечить заболевание оперативным путем

to merge with – сливаться с

mimicking - подражание

nanofoundries – наномастерская, производственный цех

to artificially tap into smth — передать/ перевести во что-то искусственным методом

software — программное обеспечение

DNA — ДНК

inherent property — неотъемлемое свойство

nucleic acid — нуклеиновая кислота

amyloid — крахмал

protein folding – складывание протеина

2. Выберите 5 любых слов и словосочетаний из задания 1 и составьте с ними предложения.

WHAT IS THE DIFFERENCE?

Nanobiotechnology (sometimes referred to as nanobiology) is best described as helping modern medicine progress from treating symptoms to generating cures and regenerating biological tissues. Three American patients have received whole cultured bladders with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a young embryo can be grown outside the body and then placed in the body in order to produce a baby. Stem cell treatments have been used to fix diseases that are found in the human heart. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been predicted that by the year 2055, computers may be made out of biochemicals and organic salts.

Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites.

While nanobiology is in its infancy, there are a lot of promising methods that will rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face the converging disciplines of nanotechnology. All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the "natural" form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as "organic merging with synthetic."

DNA (as the software for all living things) can be used as a structural system - a logical component for molecular computing. DNA nanotechnology is one important example of bionanotechnology. The utilization of the inherent properties of nucleic acids like DNA to create useful materials is a promising area of modern research. Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that self-assemble to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of amyloids found in bacterial biofilms as engineered nanomaterials that can be programmed genetically to have different properties. Protein folding studies provide a third important direction of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.

5. Ответьте на следующие вопросы:

1. May computers be made out of biochemicals and organic salts by the year 2055?

2. Why are researchers seeking to nanospheres coated with fluorescent polymers?

3. All living things, including humans, can be considered to be nanofoundries, can't they?

4.What process is best described as "organic merging with synthetic" ?

5. Will the utilization of the inherent properties of nucleic acids like DNA to create useful materials be a promising area of modern research?

 

Подготовьте его пересказ.

 

НАНОТЕХНОЛОГИИ

Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких нанообъектов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты. Нанотехнология и в особенности молекулярная технология — новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств.

 

Unit 6

Drug delivery

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices. More than $65 billion are wasted each year due to poor bioavailability. A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery. The basic point to use drug delivery is based upon three facts: a) efficient encapsulation of the drugs, b) successful delivery of said drugs to the targeted region of the body, and c) successful release of that drug there.

Drug delivery systems, lipid- or polymer-based nanoparticles, can be designed to improve the pharmacokinetics and biodistribution of the drug. However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients. When designed to avoid the body's defence mechanisms, nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility. Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties. Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.

HOME READING

1. Прочитайте текст, переведите его письменно и составьте реферат:

Nanorobotics

Nanorobotics is theemerging technology field creating machines or robots whose components are at or close to the scale of a nanometer (10−9 meters). More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots, with devices ranging in size from 0.1–10 micrometers and constructed of nanoscale or molecular components. The names nanobots, nanoids, nanites, nanomachinesor nanomites have also been used to describe these devices currently under research and development.

Nanomachines are largely in the research-and-development phase, but some primitive molecular machines and nanomotors have been tested. An example is a sensor having a switch approximately 1.5 nanometers across, capable of counting specific molecules in a chemical sample. The first useful applications of nanomachines might be in medical technology, which could be used to identify and destroy cancer cells. Another potential application is the detection of toxic chemicals, and the measurement of their concentrations, in the environment. Rice Universityhas demonstrated a single-molecule car developed by a chemical process and including buckyballs for wheels. It is actuated by controlling the environmental temperature and by positioning a scanning tunneling microscope tip.

Another definition is a robot that allows precision interactions with nanoscale objects, or can manipulate with nanoscale resolution. Such devices are more related to microscopy or scanning probe microscopy, instead of the description of nanorobots as molecular machine. Following the microscopy definition even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. For this perspective, macroscale robots or microrobots that can move with nanoscale precision can also be considered nanorobots.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Большой англо-русский политехнический словарь: в 2 т.

М., 1991.

2. Современный англо-русский политехнический словарь. М.:

Вече, 2012.

3. http://en.wikipedia.org/wiki/Portal:Nanotechnology

4. http://dic.academic.ru/contents.nsf/bse/

НАНОТЕХНОЛОГИИ

 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

для аудиторных работ к учебному материалу

на английском языке для студентов направления

28.03.01 «Нанотехнология и микросистемная техника» (профиль «Компоненты микро - и наносистемной техники») очной формы обучения

 

Часть I

 

 

 

 

Воронеж 2014

Составители: ст. преп. М.Т. Жукова

преп. Н.В. Аленькова

ст. преп. Н.И. Бородина

 

 

Нанотехнологии: методические указания для аудиторных работ к учебному материалу на английском языке для студентов направления 28.03.01 «Нанотехнология и микросистемная техника» (профиль «Компоненты микро- и наносистемной техники» очной формы обучения. Ч. 1 / ФГБОУ ВПО «Воронежский государственный технический университет»; сост. М.Т. Жукова, Н.В. Аленькова, Н.И. Бородина. Воронеж, 2014. 24 с.

 

Методические указания ориентированы на развитие навыков самостоятельного чтения, совершенствования коммуникативных навыков и умений профессионально-направленного общения. При подборе специальных текстов учитывалась программа курса по специальности. Задания к текстам способствуют снятию лексических трудностей, формированию навыков реферирования.

Предназначены для студентов 1 курса.

 

Библиогр.:

 

Рецензент канд. филол. наук, доц. Е.Л.Сарафанникова

Ответственный за выпуск зав. кафедрой д-р филол. наук, проф. В.А. Федоров

 

Печатается по решению редакционно-издательского совета Воронежского государственного технического университета

 

© ФГБОУ ВПО «Воронежский

государственный технический

университет», 2014

НАНОТЕХНОЛОГИИ

 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

 

для аудиторных работ к учебному материалу

на английском языке для студентов направления

28.03.01 «Нанотехнология и микросистемная техника» (профиль «Компоненты микро- и наносистемной техники» очной формы обучения

 

Часть 1

 

Составители:

Жукова Марина Тихоновна

Аленькова Наталия Валерьевна

Бородина Нина Ивановна

 

 

В авторской редакции

 

 

Компьютерный набор М.Т. Жуковой

 

Подписано в печать 12.12.2014.

Формат 60x84/116. Бумага для множительных аппаратов.

Усл. печ. л. 1,7. Уч.- изд. л. 1,5. Тираж экз. «С»

Зак. №

 

 

ФГБОУ ВПО «Воронежский государственный технический

университет»

394026 Воронеж, Московский просп., 14

 

UNIT 1

1. Изучите следующие слова и словосочетания:

exhibit – проявлять;

behavior – поведение;

benefit – преимущества;

advancement – продвижение;

epitaxy – эпитаксия, эпиктаксиальное выращивание (кристаллов);

deposition - осаждение, напыление;

nanoscales - наномасштабы;

stain-resistant – устойчивый к травлению;

embrace – заключать в себе, охватывать;

exploit – использовать;

apply – применять, прикладывать;

grasp – захватить, схватить;

precisely – точно;

arrange – компановать, распределять;

sequence – последовательность;

solution – раствор;

bind – притягивать, затягивать;

radical – радикал;

carbine – карбен;

alkynes – алкины, углероды ацетиленового ряда;

workpiece – обрабатываемая деталь, образец;

convergence – конвергенция.

2. Прочитайте текст и выделите основную идею:

Nanotechnology

Nanotechnology is the manipulation of atoms, molecules, and materials to form structures on the scale of nanometres (billionths of a metre). These nanostructures typically exhibit new properties or behaviors due to quantum mechanics. In 1959 Richard Feynman first pointed out some potential quantum benefits of miniaturization. A major advancement was the invention of molecular-beam epitaxy by Alfred Cho and John Arthur at Bell Laboratories in 1968 and its development in the 1970s, which enabled the controlled deposition of single atomic layers. Scientists have made some progress at building devices, including computer components, at nanoscales. Faster progress has occurred in the incorporation of nanomaterials in other products, such as stain-resistant coatings for clothes and invisible sunscreens.

Systems for transforming matter, energy, and information, based on nanometer-scale components with precisely defined molecular features. The term nanotechnology has also been used more broadly to refer to techniques that produce or measure features less than 100 nanometers in size; this meaning embraces advanced microfabrication and metrology. Although complex systems with precise molecular features cannot be made with existing techniques, they can be designed and analyzed. Studies of nanotechnology in this sense remain theoretical, but are intended to guide the development of practical technological systems.

Nanotechnology based on molecular manufacturing requires a combination of familiar chemical and mechanical principles in unfamiliar applications. Molecular manufacturing can exploit mechanosynthesis, that is, using mechanical devices to guide the motions of reactive molecules. By applying the conventional mechanical principle of grasping and positioning to conventional chemical reactions, mechanosynthesis can provide an unconventional ability to cause molecular changes to occur at precise locations in a precise sequence. Reliable positioning is required in order for mechanosynthetic processes to construct objects with millions to billions of precisely arranged atoms.

Mechanosynthetic systems are intended to perform several basic functions. Their first task is to acquire raw materials from an externally provided source, typically a liquid solution containing a variety of useful molecular species. The second task is to process these raw materials through steps that separate molecules of different kinds, bind them reliably to specific sites, and then (often) transform them into highly active chemical species, such as radicals, carbenes, and strained alkenes and alkynes. Finally, mechanical devices can apply these bound, active species to a workpiece in a controlled position and orientation and can deposite or remove a precise number of atoms of specific kinds at specific locations.

Several technologies converge with nanotechnologies, the most important being miniaturization of semiconductor structures, driven by progress in microelectronics. More directly relevant are efforts to extend chemical synthesis to the construction of larger and more complex molecular objects. Protein engineering and supramolecular chemistry are active fields that exploit weak intermolecular forces to organize small parts into larger structures. Scanning probe microscopes are used to move individual atoms and molecules.

3. Переведите следующие словосочетания: scale of nanometers; new properties; potential quantum benefits; molecular-beam epitaxy; the controlled deposition; stain-resistant coatings; invisible sunscreens; nanometer-scale components; practical technological systems; unfamiliar applications; conventional mechanical principle; conventional chemical reactions; supramolecular chemistry; intermolecular forces.

4. В следующих предложениях поставьте глаголы в скобках в необходимую форму:

1. First potential quantum benefits of miniaturization (point) out by Richard Feynman in 1959.

2. The controlled deposition of single atomic layers (enable) because if the invention of molecular-beam epitaxy by Alfred Cho and John Arthur at Bell Laboratories.

3. Later scientists (make) some progress at building devices.

4. The term nanotechnology (use) more broadly to refer to techniques that produce or measure features less than 100 nanometers in size.

5. Studies of nanotechnology (intend) to guide the development of practical technological systems.

6. Reliable positioning of molecules (require) to construct objects with millions to billions of precisely arranged atoms.

5. Прочитайте и переведите на русский язык следующие словосочетания, обращая внимание на Participle II:

the progress occurred in the incorporation of nanomaterials in other products;

systems based on nanometer-scale components;

nanotechnology based on molecular manufacturing; several technologies driven by progress in microelectronics;

scanning probe microscopes used to move individual atoms and molecules;

the motions of reactive molecules guided by using mechanical devices.

6. Образуйте Participle II от следующих глаголов и переведите их на русский язык:

to manipulate; to exhibit; to enable; to build; to control; to separate; to construct; to break; to transform; to create; to design; to apply; to fulfill; to accomplish; to require; to perform; to become.

7. Переведите следующие словосочетания на английский язык:

молекулярно – лучевое эпиктаксиальное выращивание; новые свойства; преимущества миниатюризации; контролируемое напыление; стойкое к травлению покрытие; невидимые солнечные экраны; модернизированная микрообработка; чрезвычайно активные химические образцы.

8. Ответьте на следующие вопросы по содержанию текста:

1. What does the term “ nanotechnology” mean?

2. Who first pointed out some potential quantum benefits of

miniaturization?

3. What did Alfred Cho and John Arthur invent at Bell

Laboratories in 1968?

4. What did the invention of molecular-beam epitaxy enable?

5. What spheres of life could this invention be widely used in?

6. What does nanotechnology based on molecular

manufacturing require?

7. What is mechanosynthesis and what does it provide?

8. What are the main functions of mechanosynthetic

systems?

9. What technologies converge with the appearance of nanotechnologies?

UNIT 2

1. Изучите следующие слова и словосочетания:

quantum dots квантовые точки;

nanowires – нанопровода;

nanorods – наностержень;

optoelectronics – оптикоэлектроника;

tune – приспосабливать, приводить в соответствие;

solar cell – солнечная батарея;

photoinduction – фотоиндукция;

quantum confinement - "квантовая ловушка для электрона", квантовая локализация;

surface plasmon resonance - резонанс поверхностного плазмона;

cluster - пучок; пачка; связка; блок;

malleability – пластичность;

ductility – пластичность;

suspension - (при)остановка; временное прекращение, взвесь, суспензия;

solvent – растворитель;

diffusion - диффузия; распространение путём диффузии;

sintering - агломерация, обжиг агломерационный

melting temperature - температура плавления.

2. Догадайтесь о значении этих слов и словосочетаний:

Inorganic nanomaterial; optical and electrical properties; synthetic techniques; optoelectronic device; photoinduced process; organic/inorganic nanomaterial composite systems; chemical catalysts; nanomaterial-based catalysts; size-dependent properties; surface plasmon resonance; ferroelectric materials.

3. Прочитайте текст и переведите:

 

Nanoparticles

 

Inorganic nanomaterials, (e.g. quantum dots, nanowires and nanorods) because of their interesting optical and electrical properties, could be used in optoelectronics. Furthermore, the optical and electronic properties of nanomaterials which depend on their size and shape can be tuned via synthetic techniques. There are the possibilities to use those materials in organic material based optoelectronic devices such as Organic solar cells, OLEDs etc. The operating principles of such devices are governed by photoinduced processes like electron transfer and energy transfer. The performance of the devices depends on the efficiency of the photoinduced process responsible for their functioning. Therefore, better understanding of those photoinduced processes in organic/inorganic nanomaterial composite systems is necessary in order to use them in organic optoelectronic devices.

Nanoparticles or nanocrystals made of metals, semiconductors, or oxides are of particular interest for their mechanical, electrical, magnetic, optical, chemical and other properties. Nanoparticles have been used as quantum dots and as chemical catalysts such as nanomaterial-based catalysts.

Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale this is often not the case. Size-dependent properties are observed such as quantum confinement in semiconductor particles, surface plasmon resonance in some metal particles and superparamagnetism in magnetic materials.

Nanoparticles exhibit a number of special properties relative to bulk material. For example, the bending of bulk copper (wire, ribbon, etc.) occurs with movement of copper atoms/clusters at about the 50 nm scale. Copper nanoparticles smaller than 50 nm are considered super hard materials that do not exhibit the same malleability and ductility as bulk copper. The change in properties is not always desirable. Ferroelectric materials smaller than 10 nm can switch their magnetisation direction using room temperature thermal energy, thus making them useless for memory storage. Suspensions of nanoparticles are possible because the interaction of the particle surface with the solvent is strong enough to overcome differences in density, which usually result in a material either sinking or floating in a liquid. Nanoparticles often have unexpected visual properties because they are small enough to confine their electrons and produce quantum effects. For example gold nanoparticles appear deep red to black in solution.

The often very high surface area to volume ratio of nanoparticles provides a tremendous driving force for diffusion, especially at elevated temperatures. Sintering is possible at lower temperatures and over shorter durations than for larger particles. This theoretically does not affect the density of the final product, though flow difficulties and the tendency of nanoparticles to agglomerate do complicate matters. The surface effects of nanoparticles also reduces the incipient melting temperature.

Прочитайте и переведите на русский язык следующие словосочетания, обращая внимание на Gerund и

Participle I:

 

interesting optical and electrical properties;

depending on their size and shape;

their functioning;

the operating principles;

better understanding;

the bending of bulk;

either sinking or floating;

making them useless;

sintering;

using room temperature;

the incipient melting temperature;

a tremendous driving force

5. Образуйте Gerund и Participle I от следующих глаголов и переведите их на русский язык:

 

to shape; to tune; to base; to transfer; to make; to provide; to affect; to flow; to overcome; to change; to switch; to consider; to observe; to elevate; to reduce; to interact; to operate; to process; to confine.

6. Ответьте на поставленные вопросы по содержания текста:

 

1. Why could inorganic nanomaterials be used in optoelectronics ?

2. What processes can be called photoinduced?

3. What devices can be created by using the photoinduced process?

4. Why are nanoparticles of great scientific interest?

5. What size-dependent properties are observed nowadays?

6. What special properties do nanoparticles exhibit?

7. When is the suspension of nanoparticles possibl

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти