ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Постарайтесь понять значение следующих слов и словосочетаний, переведите их.

myriad uses – numerous applications

 

to prove– to turn out

 

coated with – covered with

 

to be in one's infancy – to be young

 

to rely on– to be based on

 

converging discipline — related subject

 

disease – illness

 

to produce a baby — to give birth to a child

 

Прочитайте текст и найдите объяснение терминов

“nanobiotechnology” and “bionanotechnology”:

NANOBIOTECHNOLOGY AND BIONANOTECHNOLOGY.

WHAT IS THE DIFFERENCE?

Nanobiotechnology (sometimes referred to as nanobiology) is best described as helping modern medicine progress from treating symptoms to generating cures and regenerating biological tissues. Three American patients have received whole cultured bladders with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a young embryo can be grown outside the body and then placed in the body in order to produce a baby. Stem cell treatments have been used to fix diseases that are found in the human heart. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been predicted that by the year 2055, computers may be made out of biochemicals and organic salts.

Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites.

While nanobiology is in its infancy, there are a lot of promising methods that will rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face the converging disciplines of nanotechnology. All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the "natural" form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as "organic merging with synthetic."

DNA (as the software for all living things) can be used as a structural system - a logical component for molecular computing. DNA nanotechnology is one important example of bionanotechnology. The utilization of the inherent properties of nucleic acids like DNA to create useful materials is a promising area of modern research. Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that self-assemble to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of amyloids found in bacterial biofilms as engineered nanomaterials that can be programmed genetically to have different properties. Protein folding studies provide a third important direction of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.

5. Ответьте на следующие вопросы:

1. May computers be made out of biochemicals and organic salts by the year 2055?

2. Why are researchers seeking to nanospheres coated with fluorescent polymers?

3. All living things, including humans, can be considered to be nanofoundries, can't they?

4.What process is best described as "organic merging with synthetic" ?

5. Will the utilization of the inherent properties of nucleic acids like DNA to create useful materials be a promising area of modern research?

 

Прочитайте текст и переведите с помощью словаря.

Подготовьте его пересказ.

 

НАНОТЕХНОЛОГИИ

Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких нанообъектов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты. Нанотехнология и в особенности молекулярная технология — новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств.

 

Unit 6

Найдите в словаре перевод слов и словосочетаний, выделенных в тексте курсивом.

2. Прочитайте текст, переведите его письменно и составьте реферат:

Drug delivery

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices. More than $65 billion are wasted each year due to poor bioavailability. A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery. The basic point to use drug delivery is based upon three facts: a) efficient encapsulation of the drugs, b) successful delivery of said drugs to the targeted region of the body, and c) successful release of that drug there.

Drug delivery systems, lipid- or polymer-based nanoparticles, can be designed to improve the pharmacokinetics and biodistribution of the drug. However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients. When designed to avoid the body's defence mechanisms, nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility. Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties. Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.

HOME READING

1. Прочитайте текст, переведите его письменно и составьте реферат:

Nanorobotics

Nanorobotics is theemerging technology field creating machines or robots whose components are at or close to the scale of a nanometer (10−9 meters). More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots, with devices ranging in size from 0.1–10 micrometers and constructed of nanoscale or molecular components. The names nanobots, nanoids, nanites, nanomachinesor nanomites have also been used to describe these devices currently under research and development.

Nanomachines are largely in the research-and-development phase, but some primitive molecular machines and nanomotors have been tested. An example is a sensor having a switch approximately 1.5 nanometers across, capable of counting specific molecules in a chemical sample. The first useful applications of nanomachines might be in medical technology, which could be used to identify and destroy cancer cells. Another potential application is the detection of toxic chemicals, and the measurement of their concentrations, in the environment. Rice Universityhas demonstrated a single-molecule car developed by a chemical process and including buckyballs for wheels. It is actuated by controlling the environmental temperature and by positioning a scanning tunneling microscope tip.

Another definition is a robot that allows precision interactions with nanoscale objects, or can manipulate with nanoscale resolution. Such devices are more related to microscopy or scanning probe microscopy, instead of the description of nanorobots as molecular machine. Following the microscopy definition even a large apparatus such as an atomic force microscope can be considered a nanorobotic instrument when configured to perform nanomanipulation. For this perspective, macroscale robots or microrobots that can move with nanoscale precision can also be considered nanorobots.

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти