ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Предмет і завдання економетрики

Економетрика - швидко розвивається галузь науки, мета якої полягає в тому, щоб надати кількісні заходи економічним відносинам.
- Наука, яка дає кількісне вираження взаємозв'язків економічних явищ і процесів.
Економетрика - єдність трьох складових: економічної теорії, економічної статистики та додатків математики до економіки - встановлює кількісні заходи економічним відносинам.
Економетрика - наука про зв'язки економічно х явищ.
Термін економетрики ввів бухгалтер П.Цьемпа в 1910р. в Австро-Угорщині.
«Економетрика» = греч = «економіка» + «метрика» = вимір в економіці.
У 1929р. ЕконометристиГрілліхес підкреслював значення економетричного підходу на мікро-і макрорівні. Він писав: «Економетрика є одночасно нашим телескопом і нашим мікроскопом для вивчення навколишнього економічного світу, тому ми говоримо про мікро-і макроекономіці».
Основна увага в економетрики приділяється такими методами:
1. регресійний аналіз - для оцінки рівнянь, які найбільшою мірою відповідають сукупності рівнянь, залежних і незалежних змінних. Ці рівняння дозволяють передбачити значення залежної змінної для заданого значення незалежної (тобто прогнозувати).
2. система економетричних рівнянь;
3. моделювання часових рядів;
4. динамічні економетричні моделі.

 


 

2.МНК у випадку множинної регресії.
Як відомо, більшість соціально-економічних показників формується під впливом не одного, а багатьох факторів. Метод побудови моделі такого зв'язку має назву багатофакторного кореляційно-регресійного аналізу. В цьому випадку результативна ознака (Y ) пов'язується з допомогою рівняння множинної регресії з двома або більше факторними ознаками (Х1, Х2, Х3, . . . , Хm).

Найважливішими умовами побудови багатофакторної моделі зв'язку є достатня кількість одиниць у сукупності ( як мінімум у 8 разів більше, ніж число факторів) та відсутність мультиколінеарності факторів (близького до функціонального зв'язку між ними). В тому випадку, якщо два факторних показники мультиколінеарні, один з них повинен бути виключений з моделі.

На практиці використовуються два види рівнянь множинної регресії:

лінійне (адитивне):

(16)

 

- нелінійне (мультиплікативне):

 

, (17)

 

де а0, а1, а2, ... , аm – параметри рівняння множинної регресії;

Х1, Х2,Х3,. . ., Хm - факторні ознаки.

 

Оцінка параметрів рівняння множинної регресії здійснюється методом найменших квадратів. Параметри а1, а2 , . . . , аm називаються коефіцієнтами регресії та показують, на скільки одиниць змінюється у при збільшенні х на одиницю, при умові, що інші фактори є сталими. Наприклад, рівняння залежності ціни (Y) від рівня продуктивності праці (X1) та якості сировини (X2):

Ух = 10,2+12,6х1+0,7 х2 .

Для вимірювання тісноти взаємозв'язку між двома ознаками, що включені у модель, визначають парні коефіцієнти кореляції (ryx1, ryx2, rx1x2). Тісноту зв'язку між результативною ознакою (Y) та факторною (при спільному впливі всіх факторів) характеризують часткові коефіцієнти кореляції (Ryx1, Ryx2).

Тісноту взаємозв'язку між результативною ознакою та сукупністю всіх факторних ознак визначають на основі коефіцієнта множинної кореляції R. Величина D = R2 називається коефіцієнтом детермінації, що показує, на скільки процентів варіація Y обумовлюється варіацією всіх факторних ознак, включених у модель.

Приклад:

Матриця коефіцієнтів кореляції (парних):

 

  у х1 х2
у х 0,814 0,618
х1 0,814 х 0,210
х2 0,618 0,210 х

 

Часткові коефіцієнти кореляції:

Ryx1 = 0,714; Ryx2 = 0,580.

Коефіцієнти множинної кореляції та коефіцієнт детермінації:

R = 0,788; Д = R2 = 0,612 або 62,1%.

 

 


 

3.Економетрична модель аналізу виробництва (виробнича функція Кобба—Дугласа)

.Виробнича функція – це економетрична модель, яка кількісно описує зв’язок основних результативних показників виробничо-гос­подарської діяльності з факторами, що визначають ці показники. До основних показників належать дохід, прибуток, рентабельність, продуктивність праці, собівартість тощо.

Перше поняття виробничої функції пов’язане з математичним моделюванням технологічної залежності між обсягом продукції, що випускається, і кількісними характеристиками витрат ресурсів. Звідси і назва функції «виробнича». Уперше така функція була побудована американськими дослідниками Коббом і Дугласом ще в 30-ті роки ХХ ст. за даними про функціонування обробної промисловості США протягом двадцяти років і є класичним прикладом економетричного моделювання.

Функція Кобба–Дугласа (CDPF) належить до найвідоміших виробничих функцій, що набули широкого застосування в економічних дослідженнях, особливо на макрорівні. Класична виробнича функція Кобба–Дугласа має вигляд :

Y = aF a L1a,(1)

де Y – обсяг продукції; F – основний капітал; L – робоча сила.

Сума параметрів або степінь однорідності класичної функції Коб­ба–Дугласа дорівнює одиниці. А це означає, що при збільшенні обох виробничих ресурсів на одиницю обсяг продукції також збільшиться на одиницю. Отже, ефективність ресурсів у такому разі стала.

2.Практичні дослідження функції Кобба–Дугласа показали, що припущення про лінійну однорідність на практиці виконується рідко. Тому була запропонована виробнича функція загальнішого вигляду :

Y = aF a Lb. (2)

Сума параметрів (a + b) на відміну від попереднього випадку може бути як меншою, так і більшою від одиниці. Якщо (a + b) > 1, то темпи росту обсягу продукції вищі за темпи росту виробничих ресурсів, а якщо (a + b) < 1, то, навпаки, темпи росту продукції нижчі за темпи росту ресурсів.

Припустимо, що рівень кожного виробничого ресурсу збільшився на r %, тоді величини їх відповідно дорівнюватимуть і .

Обсяг продукції на основі виробничої функції запишеться так:

Звідси при a + b > 1 обсяг продукції зростає більш ніж на r %; при a + b < 1 – менш ніж на r%; при a + b = 1 продукція збільшиться на r %. Узявши частинні похідні від виробничої функції Кобба–Дугласа, одержимо :

; (3).

Це означає, що граничний приріст продукції за рахунок приросту кожного ресурсу визначається як добуток коефіцієнта еластичності на середню ефективність ресурсу. Параметр a у функції Кобба–
Дугласа залежить від вибраних одиниць вимірювання Y, F, L; водночас числове значення цього параметра визначається також ефективністю виробничого процесу. У цьому можна переконатись, порівняв­ши дві виробничі функції, які відрізняються одна від одної лише значенням параметра a.

Для фіксованих значень F і L тій функції, в якої більше числове значення параметра a, відповідає більше значення Y. Отже, і виробничий процес, який описується цією функцією, буде ефективнішим. Другі похідні функції Кобба–Дугласа мають такий вигляд:

; (4).

Беручи до уваги, що 0 < a < 1 і 0 < b < 1, YFF < 0 і YLL < 0, то справедливий висновок: при збільшенні ресурсів граничний приріст обсягу продукції зменшуватиметься. Якщо обсяг продукції у функції Кобба–Дугласа вважати сталим (const), то можна обчислити граничні норми заміщення ресурсів:

(5).

Звідси бачимо, що гранична норма заміщення ресурсів у функції
Кобба–Дугласа визначається як добуток співвідношень величин ресурсів та їх коефіцієнтів еластичності.

 


 

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти