ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Мультиколінеарність означає існування тісної лінійної залежності, або кореляції, між двома чи більше пояснювальними змінними.

Вона негативно впливає на кількісні характеристики економетричної моделі або робить її побудову взагалі неможливою.

Так, мультиколінеарність пояснювальних змінних призводить до зміщення оцінок параметрів моделі, через що з їх допомогою не можна зробити коректні висновки про результати взаємозв’язку залежної і пояснювальних змінних. У крайньому разі, коли між пояснювальними змінними існує функціональний зв’язок, оцінити вплив цих змінних на залежну взагалі неможливо. Тоді для оцінювання параметрів моделі метод найменших квадратів не придатний, оскільки матриця буде виродженою.

Нехай зв’язок між пояснювальними змінними не функціональний, проте статистично істотний. Тоді оцінити параметри методом найменших квадратів теоретично можливо, але знайдена оцінка може призвести до таких помилкових значень параметрів, що сама модель стане беззмістовною.

Основні наслідки мультиколінеарності.

1. Падає точність оцінювання, яка виявляється так:

а) помилки деяких конкретних оцінок стають занадто великими;

б) ці помилки досить корельовані одна з одною;

в) дисперсії оцінок параметрів різко збільшуються.

2. Оцінки параметрів деяких змінних моделі можуть бути незначущими через наявність їх взаємозв’язку з іншими змінними, а не тому, що вони не впливають на залежну змінну. У такому разі множина вибіркових даних не дає змоги цей вплив виявити.

3. Оцінки параметрів стають досить чутливими до обсягів сукупності спостережень. Збільшення сукупності спостережень іноді може спричинитися до істотних змін в оцінках параметрів.

З огляду на перелічені наслідки мультиколінеарності при побудові економетричної моделі потрібно мати інформацію про те, що між пояснювальними змінними не існує мультиколінеарністі.

 

Ознаки мультиколінеарності

1. Коли серед парних коефіцієнтів кореляції пояснювальних змінних є такі, рівень яких наближається або дорівнює множинному коефіцієнту кореляції, то це означає можливість існування мультиколінеарності. Інформацію про парну залежність може дати симетрична матриця коефіцієнтів парної кореляції або кореляції нульового порядку між пояснювальними змінними:

Проте коли до моделі входять більш як дві пояснювальні змінні, то вивчення питання про мультиколінеарність не може обмежуватись інформацією, що її дає ця матриця. Явище мультиколінеарності в жодному разі не зводиться лише до існування парної кореляції між незалежними змінними.

Більш загальна перевірка передбачає знаходження визначника (детермі­нанта) матриці r, який називається детермінантом кореляції і позначається . Числові значення детермінанта кореляції задовольняють умову: .

2. Якщо = 0, то існує повна мультиколінеарність, а коли = 1, мультиколінеарність відсутня. чим ближче до нуля, тим певніше можна стверджувати, що між пояснювальними змінними існує мультиколінеарність. Незважаючи на те, що на числове значення впливає дисперсія пояснювальних змінних, цей показник можна вважати точковою мірою рівня мультиколі­неарності.

3. Якщо в економетричній моделі знайдено мале значення параметра при високому рівні частинного коефіцієнта детермінації і при цьому -критерій істотно відрізняється від нуля, то це також свідчить про наявність мультиколінеарності.

4. Коли коeфіцієнт частинної детермінації , який обчислено для регресійних залежностей між однією пояснювальною змінною та іншими, має значення, яке близьке до одиниці, то можна говорити про наявність мультиколінеарності.

5. Нехай при побудові економетричної моделі на основі покрокової регресії введення нової пояснювальної змінної істотно змінює оцінку параметрів моделі при незначному підвищенні (або зниженні) коефіцієнтів кореляції чи детермінації. тоді ця змінна перебуває, очевидно, у лінійній залежності від інших, які було введено до моделі раніше.

Усі ці ознаки мультиколінеарності мають один спільний недолік: ні одна з них чітко не розмежовує випадки, коли мультиколінеарність істотна і коли нею можна знехтувати.

 

Алгоритм Фаррара-Глобера

 

Найповніше дослідити мультиколінеарність можна з допомогою алгоритму Фаррара – Глобера. Цей алгоритм має три види статистичних критеріїв, згідно з якими перевіряється мультиколінеарність всього масиву незалежних змінних ( - «хі» – квадрат); кожної незалежної змінної з рештою змінних (F-критерій); кожної пари незалежних змінних (t-критерій).

Усі ці критерії при порівнянні з їх критичними значеннями дають змогу робити конкретні висновки щодо наявності чи відсутності мультиколінеарності незалежних змінних.

Алгоритм Фаррара – Глобера.

Крок 1. Стандартизація (нормалізація) змінних.

Позначимо вектори незалежних змінних економетричної моделі через . Елементи стандартизованих векторів обчислио за формулою:

де – число спостережень ; – число пояснювальних змінних, ; – середнє арифметичне k-ї пояснювальної змінної; – дисперсія -ї пояснювальної змінної.

Крок 2. Знаходження кореляційної матриці

де – матриця стандартизованих незалежних (пояснювальних) змінних, – матриця, транспонована до матриці .

Крок 3. Визначення критерію («хі»-квадрат):

де – визначник кореляційної матриці .

Значення цього критерію порівнюється з табличним при ступенях свободи і рівні значимості . Якщо , то в масиві пояснювальних змінних існує мультиколінеарність.

Крок 4. Визначення оберненої матриці:

Крок 5. Очислення -критеріїв:

,

де – діагональні елементи матриці . Фактичні значення критеріїв порівнюються з табличними при і ступенях свободи і рівні значущості . Якщо , то відповідна -та незалежна змінна мультиколінеарна з іншими.

Коефіцієнт детермінації для кожної змінної

Крок 6. Знаходження частинних коефіцієнтів кореляції:

де – елемент матриці , що міститься в -му рядку і -му стовпці; i – діагональні елементи матриці .

Крок 7. Обчислення -критеріїв:

Фактичні значення критеріїв порівнюються з табличними при ступенях свободи і рівні значущості . Якщо , то між незалежними змінними і існує мультиколінеарність.

Якщо -критерій більший за табличне значення, тобто коли -та змінна залежить від усіх інших у масиві, то необхідно вирішувати питання про її вилучення з переліку змінних.

Якщо – критерій більший за табличний, то ці дві змінні ( і ) тісно пов’язані одною з одною. Звідси, аналізуючи рівень обох видів критеріїв і , можна зробити обґрунтований висновок про те, яку зі змінних необхідно вилучити з дослідження або замінити іншою. Проте заміна масиву незалежних змінних завжди має узгоджуватись з економічною доцільністю, що випливає з мети дослідження.

Найпростіше позбутися мультиколінеарності в економетричній моделі можна, відкинувши одну зі змінних мультиколінеарної пари. Але на практиці вилучення якогось чинника часто суперечить логіці економічних зв’язків. Тоді можна перетворити певним чином пояснювальні змінні моделі:

а) взяти відхилення від середньої;

б) замість абсолютних значень взяти відносні;

в) стандартизувати пояснювальні змінні і т. iн.

За наявності мультиколінеарності змінних потрібно звертати увагу й на специфікацію моделі. Іноді заміна однієї функції іншою, якщо це не суперечить апріорній інформації, дає змогу уникнути явища мультиколінеарності.

Коли жодний з розглянутих способів не дає змоги позбутися мультиколінеарності, то параметри моделі слід оцінювати за методом головних компонентів.

Приклад 7. Алгоритм Фаррара – Глобера

 

За умовою задачі 3 дослідити наведені чинники на наявність мультиколеніарністі.

Розв’язання

Крок 1. Середні значення для кожної пояснювальної змінної:

; ;

Дисперсії кожної незалежної змінної мають такі значення:

; ;

 

Усі розрахункові дані для стандартизації змінних згідно з поданими співвідношеннями наведено в табл. 6.1.

 

Таблиця 6.1. Розрахункові дані задачі

№ з/п
-17,60 0,03 -12,40 309,76 0,00 153,76 -0,02 0,10 -0,21
-249,60 -0,13 -15,40 62300,16 0,02 237,16 -0,31 -0,42 -0,26
-81,60 0,13 8,60 6658,56 0,02 73,96 -0,10 0,43 0,15
94,40 0,03 6,60 8911,36 0,00 43,56 0,12 0,10 0,11
-329,60 -0,07 -2,40 108636,16 0,00 5,76 -0,41 -0,22 -0,04
662,40 -0,07 -1,40 438773,76 0,00 1,96 0,82 -0,22 -0,02
86,40 0,08 9,60 7464,96 0,01 92,16 0,11 0,26 0,16
-41,60 -0,14 45,60 1730,56 0,02 2079,36 -0,05 -0,45 0,78
14,40 -0,02 -22,40 207,36 0,00 501,76 0,02 -0,06 -0,38
-137,60 0,15 -16,40 18933,76 0,02 268,96 -0,17 0,49 -0,28
Всього       653926,40 0,09 3458,40      

 

Матриця стандартизованих змінних подається у вигляді:

Крок 2. Знайдемо кореляційну матрицю :

Кожний елемент цієї матриці характеризує тісноту зв’язку однієї незалежної змінної з іншою. Оскільки діагональні елементи характеризують тісноту зв’язку кожної незалежної з цією самою змінною, то вони дорівнюють одиниці.

Отже, ; ; . Між змінними якщо і існує зв’язок, то він надто слабкий.

Щоб остаточно переконатися в тому, що в моделі не існує мультиколінеаності, продовжимо перевірку.

Крок 3. Обчислимо детермінант кореляційної матриці і критерій :

;

При ступені свободи і рівні значимості критерій . Оскільки , доходимо висновку, що в масиві змінних не існує мультиколінеарність.

Крок 4. Знайдемо матрицю, обернену до матриці :

Крок 5. Використовуючи діагональні елементи матриці , обчислимо -критерії:

; ;

Для рівня значимості і ступенів свободи = 7 і = 2 критичне значення критерію . Очевидно, , тобто, ні одна з незалежних змінних справді не мультиколінеарна з двома іншими.

Крок 6. Обчислимо частинні коефіцієнти кореляції, скориставшись елементами матриці :

; ;

Крок 7. Визначимо t-критерій на основі частинних коефіцієнтів кореляції.

; ;

При ступенях свободи і рівні значимості . Усі числові значення -критеріїв менші за критичне значення. Ще раз робимо висновок, що всі пари незалежних змінних не є мультиколінеарними і використання для оцінки параметрів МНК виправдане.

Аналізуючи результати дослідження, робимо висновок про доцільність побудови модель залежності продуктивності праці лише від середньої заробітної плати. З усіх моделей вона характеризується найбільшим значенням оціненого коефіцієнта детермінації. За перевіркою статистичної значимості оцінок параметрів вплив лише даного чинника виявився істотним, окрім того для фондомісткості оцінка параметра перевищує його стандартну похибку, що швидше свідчить про її зміщенність.

Розділ 7. Автокореляція

Поняття автокореляції

Автокореляція – це взаємозв’язок послідовних елементів часового чи просторового ряду даних.

В економетричних моделях особливе значення має автокореляція залишків. Звернемось знову до другої необхідної умови лінійної моделі:

Це означає, що коваріації між залишками економетричної моделі відсутні, а дисперсія є сталою для всіх спостережень. Ці умови називаються явищем гомоскедастичності. За відсутності коваріації залишків дисперсія може змінюватися для груп спостережень чи для кожного спостереження. Ці умови називаються явищем гетероскедастичності.

В економетричних дослідженнях часто виникають і такі ситуації, коли дисперсія залишків стала, але спостерігається їх коваріація. Це явище називають автокореляцією залишків.

Автокореляція залишків найчастіше спостерігається тоді, коли економетрична модель будується на основі часових рядів. Якщо існує кореляція між послідовними значеннями деякої незалежної змінної, то спостеріга­тиметься і кореляція послідовних значень залишків.

Автокореляція може бути також наслідком помилкової специфікації економетричної моделі. Крім того, наявність автокореляції залишків може означати, що необхідно ввести до моделі нову незалежну змінну.

У загальному випадку ми вводимо до моделі лише деякі з істотних змінних, а вплив змінних, які виключені з моделі, має позначитися на зміні залишків. Існування кореляції між послідовними значеннями виключеної з розгляду змінної не обов’язково має тягти за собою відповідну кореляцію залишків, бо вплив різних змінних може взаємно погашатися. Якщо кореляція послідовних значень виключених з моделі змінних спостерігається, то загроза виникнення автокореляції залишків стає реальністю.

 

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти