ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Поняття гетероскедастичності

Розглянемо особливості економетричного моделювання, коли порушується умова, згідно з якою припускається, що відхилення мають такий розподіл імовірностей, який зберігається для всіх спостережень. Тоді дисперсія залишків лишається незмінною для кожного спостереження.

Якщо дисперсія залишків стала для кожного спостереження, тобто , то ця її властивість називається гомоскедастичністю.

Часто у практичних дослідженнях явище гомоскедастичності порушується. Випробування на наявність чи відсутність гомоскедастичності звичайно не практикується, але здебільшого можна висунути гіпотези про правдоподібність альтернативних припущень щодо пропорційності помилки до . Так, наприклад, при побудові економетричної моделі, що характеризує залежність між заощадженнями і доходами населення на підставі теоретичної та практичної інформації, можна висунути гіпотезу, що дисперсія залишків за окремими групами населення змінюватиметься і буде пропорційною до середнього доходу цієї групи. Коли розглядати економетричну модель, що характеризує залежність між дивідендами і розміром прибутку або між витратами на харчування і доходом на одного члена сім’ї, витратами на харчування і загальними витратами, то також можна припустити, що дисперсія залишків для окремих груп спостережень змінюватиметься.

Якщо дисперсія залишків змінюється для кожного спостереження або групи спостережень, тобто , то це явище називається гетероскедастичністю.

Якщо існує гетероскедастичність залишків, то це спричинюється до того, що оцінки параметрів моделі 1МНК будуть незміщеними, обгрунтованими, але неефективними. При цьому формулу для стандартної помилки оцінки, строго кажучи, застосувати не можна.

Отже, потрібно з’ясувати зміст гіпотези, згідно з якою , де лишається невідомим параметром, а – відома симетрична додатно визначена матриця.

Щоб оцінити параметри моделі, коли дисперсії залишків визначаються , потрібно визначити матрицю .

Оскільки явище гетероскедастичності пов’язане лише з тим, що зміню­ються дисперсії залишків, а коваріація між ними відсутня, то матриця має бути діагональною, а саме:

Щоб пояснити, чому саме такий вигляд має ця матриця, потрібно ще раз наголосити: за наявності гетероскедастичності для певних вихідних даних одна (або кілька) пояснювальних змінних можуть різко змінюватись від одного спостереження до іншого, тоді як залежна змінна має такі самі коливання, як і для попередніх спостережень.

Але це означає, що дисперсія залишків, яка змінюватиметься від одного спостереження до іншого (чи для групи спостережень), може бути пропорційною до величини пояснювальної змінної (або до її квадрата), яка зумовлює гетероскедастичність, або пропорційною до квадрата залишків.

Звідси в матриці значення можна обчислити, користуючись гіпотезами:

а) , тобто дисперсія залишків пропорційна до зміни пояснювальної змінної ;

б) , тобто зміна дисперсії пропорційна до зміни квадрата пояснювальної змінної ( );

в) , тобто дисперсія залишків пропорційна до зміни квадрата залишків за модулем.

Для першої гіпотези:

Для другої гіпотези:

Для третьої гіпотези: або , або .

Оскільки матриця – симетрична і додатно визначена, то при , матриця має вигляд:

Економетрична модель, якій притаманна гетероскедастичність, є узагальненою моделлю, і для оцінювання її параметрів слід скористатися узагальненим методом найменших квадратів – метод Ейткена.

 

9.2. Перевірка гетероскедастичності на основі критерію

 

Цей метод застосовується тоді, коли вихідна сукупність спостережень досить велика. Розглянемо відповідний алгоритм.

Крок 1. Вихідні дані залежної змінної розбиваються на груп відповідно до зміни рівня величини .

Крок 2. За кожною групою даних обчислюється сума квадратів відхилень:

Крок 3. Визначається сума квадратів відхилень в цілому по всій сукупності спостережень:

Крок 4. Обчислюється параметр :

де загальна сукупність спостережень; – кількість спостережень -ї групи.

Крок 7. Обчислюється критерій:

який наближено відповідатиме розподілу при ступені свободи , коли дисперсія всіх спостережень однорідна. Тобто якщо значення не менше за табличне значення при вибраному рівні довіри і ступені свободи , то спостерігається гетероскедастичність.

 

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти