ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Правильна чотирикутна піраміда

В основі правильної чотирикутної піраміди лежить квадрат, який зображується довільним паралелограмом. Його центром є точка перетину діагоналей. Ця точка — основа висоти піраміди.

Нехай сторона квадрата а (рис.43). Тоді .

Рис.43

Відстань від основи висоти до бічної грані: .

Правильна шестикутна піраміда

В основі правильної шестикутної піраміди лежить правильний шестикутник (рис.44). Його центром є точка перетину діагоналей. Ця точка — основа висоти піраміди.

Рис.44

Тоді OD=R=a. Нехай сторона правильного шестикутника а.

Зрізана піраміда

Зрізаною пірамідою (рис.45) називається многогранник, який залишиться, якщо від піраміди відділити площиною, яка паралельна основі, піраміду з тією ж вершиною.

Теорема. Площина, яка паралельна основі піраміди й перетинає її, відтинає подібну піраміду.

Рис.45

Правильна зрізана піраміда — це зрізана піраміда, яку дістали з правильної піраміди. Її бічні ребра рівні й нахилені до площини основи під одним і тим самим кутом. Її бічні грані дорівнюють рівнобічній трапеції і нахилені до площини нижньої основи під одним і тим самим кутом. Висоти бічних граней піраміди називаються апофемами. Бічна поверхня правильної зрізаної піраміди дорівнює добутку півсуми периметрів основ і апофеми.

, де і - периметри відповідних основ, - апофема.

ТІЛА ОБЕРТАННЯ

Циліндр

Круговим циліндром називається тіло, яке складається з двох кругів, що не лежать в одній площині й суміщаються паралельними перенесенням, і всіх відрізків, що сполучають відповідні точки цих кругів (рис.46). Круги називаються основами циліндра, а відрізки, що сполучають точки кіл кругів, —твірними циліндра. Основи циліндра рівні й лежать у паралельних площинах. Твірні циліндра паралельні й рівні. Бічна поверхня циліндра складається з його твірних. Поверхня — з основі бічної поверхні. Радіус циліндра — це радіус його основи. Висота циліндра — відстань між площинами його основ. Віссю циліндра називається пряма, яка проходить через центри основ. Вісь циліндра паралельна твірним.

Циліндр називається прямим, якщо його твірні перпендикулярні до площин основ. Прямий циліндр (далі просто «циліндр») можна дістати в результаті обертання прямокутника навколо сторони як осі. У прямому циліндрі висота дорівнює твірній.

Перерізом циліндра площиною, паралельною його осі, є прямокутник. Дві його сторони — твірні циліндра, а дві інші — рівні й паралельні хорди основ. Осьовий переріз — переріз циліндра площиною, яка проходить через його вісь. Площина, паралельна осі циліндра, перпендикулярна до площин його основ (рис.46):

Рис.46

Відстанню від осі циліндра до площини перерізу, якщо ця площина паралельна осі циліндра, є перпендикуляр, проведений з точки , до хорди (або з О до АВ). Відрізок є висотою, тобто бісектрисою й медіаною в рівнобедреному трикутнику , де = = B (радіус циліндра). Хорду АВ видно з центра нижньої основи під кутом АОВ, а з центра верхньої основи — під кутом . Відрізок є бісектрисою, медіаною, висотою рівнобедренного , а є ортогональною проекцією на площу нижньої основи. Отже, . Площина, паралельна площині основи циліндра, перетинає його бічну поверхню по колу, яке дорівнює колу основи (рис.47).

Рис.47

Площа бічної поверхні циліндра обчислюється за формулою , де С — довжина кола основи, R — радіус циліндра, H — його висота.

Конус

Круговим конусом називається тіло, яке складається з круга — основи конуса, точки, яка не лежить у площині цього круга, — вершини конуса і всіх відрізків, що сполучають вершину конуса з точками основи. Відрізки, що сполучають вершину конуса з точками кола основи, називаються твірними конуса.

Конус називається прямим (далі просто «конус»), якщо пряма, що сполучає вершини конуса з центром основи, перпендикулярна до площини основи. Прямий круговий конус можна розглядати як тіло, утворене в результаті обертання прямокутного трикутника навколо його катета як осі. Висота конуса — перпендикуляр, опущений із його вершини на площину основи. Віссю прямого кругового конуса називається пряма, яка містить його висоту. Переріз конуса площиною, яка проходить через його вершину, — рівнобедрений трикутник, у якого бічні сторони є твірними конуса, а основою є хорда основи.

Рис.48

Розглянемо переріз CSD. Він перетинає основу конуса по хорді CD. Хорду CD видно з центра основи під кутом COD, а з вершини конуса — під кутом CSD. Сам переріз — рівнобедрений з основою CD, де SC = SD твірні конуса. Його ортогональною проекцією на площину основи конуса є рівнобедрений з основою CD і OC = OD = R. Відрізок OK є бісектрисою, медіаною, висотою , відстанню від точки O до хорди CD. Відрізок SK є бісектрисою, медіаною, висотою та відстанню від вершини конуса S до хорди CD. Кут SKO є лінійним кутом двогранного кута між площиною перерізу й площиною основи.

Зрізаний конус

Площина, паралельна площині основи конуса, перетинає конус по кругу, а бічну поверхню — по колу з центром на осі конуса. Така площина відтинає від конуса менший конус. Частина, що залишилась, називається зрізаним конусом (рис.49).

Рис.49

Осьовий переріз зрізаного конуса – рівнобічна трапеція, в якої основи — діаметри основ зрізаного конуса, бічні сторони — твірні, висота — висота зрізаного конуса. Отже, . , де , - формула для обчислення бічної поверхні конуса.

Куля

Кулею називається тіло, що складається з усіх точок простору, які розташовані від даної точки на відстані, що не більша за дану. Ця точка називається центром кулі, а дана відстань — радіусом кулі. Межа кулі називається кулевою поверхнею, або сферою.

Відрізок, що сполучає дві точки кульової поверхні й проходить через центр кулі, називається діаметром. Куля є тілом обертання, яке утворюється під час обертання півкруга навколо його діаметра як осі. Будь-який переріз кулі площиною є круг. Центр цього круга є основою перпендикуляра, опущеного з центра кулі на січну площину.

Рис.50

На рис.50 у кут = 90°, ОА – радіус кулі, - радіус перерізу, - відстань від центра кулі до площини перерізу (d).

Площина, яка проходить через центр кулі, називається діаметральною площиною. Переріз кулі діаметральною площиною називається великим кругом, а переріз сфери — великим колом, або екватором. Будь-яка діаметральна площина кулі є її площиною симетрії. Центр кулі є її центром симетрії. Площина, яка проходить через точку А кульової поверхні та є перпендикулярною до радіуса, проведеного в точку А, називається дотичною площиною. Точка А називається точкою дотику. Дотична площина має з кулею тільки одну спільну точку — точку дотику. Пряма, яка належить дотичній до кулі площині й проходить через точку дотику, називається дотичною до кулі в цій точці. Вона має з кулею тільки одну спільну точку. Лінією перетину двох сфер є коло. Площа сфери радіусом R обчислюється за формулою .

Кульовим сегментом називається частина кулі, яку відтинає від неї січна площина. На рис.51 H — висота кульового сегмента. Кульовий сегмент обмежується частиною сфери, площа якої обчислюється за формулою , і кругом, який називається основою сегмента. Кульовий сектор — це кульовий сегмент і конус, вершина якого в центрі кулі, а основою є основа сегмента.

Рис.51

 

 

КОМБІНАЦІЇ ГЕОМЕТРИЧНИХ ТІЛ

Циліндр, вписаний у кулю

Основи циліндра є рівновіддаленими від центра кулі (рис.52). Ця комбінація тіл є симетричною відносно будь-якої площини, що проходить через центр кулі паралельно твірним циліндра. У перерізі тіла такою площиною дістанемо прямокутник і описане навколо нього коло (рис.53). Прямокутник ABCD є осьовим перерізом циліндра, а описане коло — велике коло даної кулі. Отже, діагональAC є діаметром описаної кулі.

Рис.52 Рис.53

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти