ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Циліндр, описаний навколо кулі

Загрузка...

Площина, проведена через центр кулі паралельно твірним циліндра (рис.54), є площиною симетрії тіла. У цьому випадку висота циліндра дорівнює діаметру кулі. В осьовому перерізі цього тіла отримаємо прямокутник, у який вписане коло (рис.55). Але із цього випливає, що осьовий переріз даного циліндра — квадрат. Отже, діаметр циліндра дорівнює діаметру кулі.

Рис.54 Рис.55

Конус, вписаний у кулю

Вершина конуса лежить на сфері (рис.56). Основа конуса лежить на сфері. Комбінація є симетричною відносно площини, що містить вісь конуса. У такому перерізі дістанемо трикутник, вписаний у коло (рис.57).

Рис.56 Рис.57

Трикутник рівнобедрений. Бічні сторони — твірні конуса, коло — велике коло описаної кулі. Отже, радіус кулі дорівнює радіусу кола, описаного навколо осьового перерізу конуса.

Куля, вписана в конус

Площина, яка містить вісь конуса, є площиною симетрії (рис.58). Осьовий переріз комбінації є рівнобедреним трикутником, у який вписане коло (рис.59). Трикутник — це осьовий переріз конуса, тобто SA = SB — твірні конуса, AB — діаметр основи конуса, а коло — велике коло вписаної кулі. Отже, радіус кулі дорівнює радіусу кола, вписаного в .

Рис.58 Рис.59

Інші комбінації геометричних тіл

Конус є вписаним у циліндр (рис.60), коли основа конуса збігається з нижньою основою циліндра, а вершина конуса — центр верхньої основи циліндра. Осі циліндра і конуса в цьому випадку збігаються.

Рис.60

Циліндр, вписаний у конус (рис.61), якщо нижня основа циліндра лежить на основі конуса, осі конуса та циліндра збігаються, верхня основа циліндра збігається з перерізом конуса площиною, паралельною основі, на відстані, яка дорівнює висоті циліндра, від основи.

Рис.61

Призмою, вписаною в циліндр (рис.62), називається така призма, в якої площинами основ є площини основ циліндра, а бічними ребрами — твірні циліндра. Отже, висоти призми й циліндра збігаються, а основи призми є вписаними многокутниками для основ циліндра.

Рис.62

Дотичною площиноюдо циліндра називається площина, яка проходить через твірну циліндра й перпендикулярна до площини осьового перерізу, що містить цю твірну.

Призмою, описаною навколо циліндра (рис.63), називається призма, в якої площинами основ є площини основ циліндра, а бічні грані дотикаються до циліндра.

Рис.63

У цьому випадку основи призми є описаними многокутниками навколо основ циліндра, а висоти циліндра й призми збігаються. Випадки «призма, вписана в конус», «призма, описана навколо конуса» аналогічні комбінаціям «конус — циліндр». Їм же аналогічні комбінації «циліндр — піраміда».

Пірамідою, вписаною в конус, називається така піраміда, основою якої є многокутник, вписаний в коло основи конуса, а вершиною — вершина конуса. Бічні ребра піраміди, вписаної в конус, є твірними ­конуса.

Дотичною площиною до конуса називається площина, яка проходить через твірну конуса й перпендикулярна до площини осьового перерізу, проведеного через цю твірну.

Пірамідою, описаною навколо конуса (рис.64), називається піраміда, в основі якої лежить многокутник, описаний навколо основи конуса, а вершина збігається з вершиною конуса.

Рис.64

Площини бічних граней описаної піраміди є дотичними площинами до ко­нуса. Многогранник називається вписаним у кулю, якщо всі його вершини лежать на поверхні кулі. Многогранник називається описаним навколокулі, якщо всі його грані дотикаються до поверхні кулі.

Описані кулі

Кожна грань вписаного у сферу многогранника є вписаним у деяке коло многокутником. Основи перпендикулярів, які опущені з центра описаної кулі на площини граней, є центрами описаних навколо граней кіл. Отже, центром кулі, описаної навколо многогранника, є точка перетину перпендикулярів до площини граней, які проведені через центри кіл, описаних навколо граней. Якщо призма вписана в кулю, то вона є прямою і навколо її основи можна описати коло.

Наприклад, довільна правильна призма може бути вписана в кулю. Центром описаної кулі буде середина висоти призми, яка проходить через центри кіл, що описані навколо основ призми.

Центр описаної навколо призми кулі може буде розташований всередині призми, поза призмою, на бічній грані. Навколо будь-якої правильної піраміди можна описати кулю. Центр її лежить на осі піраміди. Центр описаної навколо піраміди кулі може лежати всередині піраміди, поза пірамідою, на бічній грані, на основі.

Центр описаної навколо піраміди кулі — точка перетину перпендикуляра, проведеного до основи піраміди через центр описаного навколо основи кола, й серединного перпендикуляра до бічного ребра, проведеного в площині, яка проходить через бічне ребро й названий вище проведений до основи піраміди перпендикуляр. Для правильної піраміди центр описаної кулі — це точка перетину прямої, яка містить висоту піраміди, й серединного перпендикуляра до бічного ребра.

Якщо зрізана піраміда вписана в кулю, то її основи — многокутники, навколо яких можна описати коло. Бічні грані такої зрізаної піраміди — рівнобічні трапеції. Отже, всі бічні ребра дорівнюють одне одному. Із цього випливає, що бічні ребра вихідної піраміди рівні, значить, основа висоти вихідної піраміди — центр кола, описаного навколо її основи. Центр описаної кулі знаходимо так само, як і для повної піраміди.

Вписані кулі

Якщо куля вписана в призму, то в її перпендикулярний переріз можна вписати коло. Висота призми дорівнює діаметру кола, вписаного в перпендикулярний переріз призми, тобто діаметру вписаної кулі. Центр кулі — середина висоти призми, що проходить через центр кола, яке вписане в перпендикулярний переріз. Центр кулі, яка вписана в пряму призму, — це середина висоти призми, що проходить через центр кола, яке вписане в основу призми.

Описана піраміда

Якщо вершина піраміди проектується в центр кола, яке є вписаним в основу піраміди, то центр вписаної кулі — точка перетину висоти піраміди з бісектрисою лінійного кута двогранного кута при ребрі основи (рис.65). У будь-яку правильну піраміду можна вписати кулю, центр якої лежить на висоті піраміди. Точки дотику кулі й бічних граней лежать на висотах бічних граней, а точка дотику вписаної кулі й основи є центром кола, вписаного в основу.

O — центр кола, яке вписане в основу; P — центр вписаної в піраміду кулі; SO — висота піраміди; SD — висота бічної грані.

Рис.65

Загрузка...

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти