ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Вопрос 32. Синтетические нуклеотидные последовательности используемые в генной инженерии: линкеры, адапторы, праймеры.

Загрузка...

Для создания химер – организмов, обладающих новыми сочетаниям произнаков разработаны методы манипулирования генами in vitro. В основном применяют ферменты действующие на ДНК, векторы и искусственные олигонуклеотиды ( линкеры, адапторы, праймеры, промоторы, зонды).

Линкеры – однонитевые олигонуклеотиды с определёнными последовательностями, которые после отжига могут образовывать дуплексы, которые имеют тупые концы и содержат сайты рестрикции. Линкеры используют для присоединения фрагментов ДНК с тупыми концами к вектору с липкими концами образованные одной рестриктазой. Сначала линкеры с двух сторон присоединяют к фрагментов ДНК с помощью ДНК-лигазы. А затем обрабатывают растрикатзой. Затем векторы и фрагменты объединяют через липкие концы.

Адапторы – одно или двунитевые олигонуклеотиды. Которые предназначены для соединения молекул с несовместимыми концами. Их применяют если выступающие концы клонируемых молекул образованы различными рестриктазами если в клонируемых фрагментах ДНК есть сайты используемы рестриктаз. Однонитевые адапторы используют для объединения молекул ДНК с 3-5 концами. Двунитевые (конверсионные) способны изменять выступающие концы фрагментов ДНК.

Праймер. Используют для получения зондов. При синтезе зондов праймерами служат олигодезоксирибонуклеотиды, которые получают в результате гидролиза ДНК панкреатической ДНКазой. Их разнообразие очень большое и можно найти комплементарные последовательности к любому из участков матричной РНК. Добавление в реакционную смесь таких праймеров даёт возможность получить все участки гена в наборе зондов.

№33. Секвенирование ДНК по Сэнгеру.

В настоящее время для секвенирования нуклеиновых кислот обычно применяется метод Сэнгера с дидезоксинуклеозидтрифосфатами (ddNTP). Обычно до начала секвенирования производят амплификацию участка ДНК, последовательность которого требуется определить при помощи ПЦР.

Секвенирование ДНК по Сэнгеру: "плюс-минус" метод

Первым методом прямого ферментативного секвенирования ДНК стал метод, предложенный Ф. Сэнгером и Д. Коулсоном в 1975 г. В качестве матрицы в реакции полимеразного копирования использовался одноцепочечный фрагмент ДНК, в качестве праймеров - синтетические олигонуклеотиды или природные субфрагменты, получаемые при гидролизе рестрицирующими эндонуклеазами, а в качестве фермента - фрагмент Кленова ДНК полимеразы I (PolI) из E.coli. Метод включал два этапа. Сначала в ограниченных условиях проводили полимеразную реакцию в присутствии всех четырех типов dNTP (один из них был мечен по альфа-положению фосфата), получая на выходе набор продуктов неполного копирования матричного фрагмента. Смесь очищали от несвязавшихся дезоксинуклеозидтрифосфатов и делили на восемь частей. После чего в "плюс" системе проводили четыре реакции в присутствии каждого из четырех типов нуклеотидов, а в "минус" системе - в отсутствие каждого из них. В результате, в "минус" системе терминация происходила перед dNTP данного типа, а в "плюс" системе - после него. Полученные таким образом восемь образцов разделяли с помощью электрофореза, "считывали" сигнал и определяли последовательность исходной ДНК. Этим способом была секвенирована короткая ДНК фага фХ174, состоящая из 5386 нуклеотидных пар.

Секвенирование ДНК по Сэнгеру: метод "терминаторов"

В 1977 г. автор "плюс-минус" метода предложил еще один способ ферментативного секвенирования, получивший название метода терминирующих аналогов трифосфатов. Более мощный и более технологичный, этот способ, несколько модифицированный, применяется до сих пор. В основе метода тоже лежало ферментативное копирование с помощью фрагмента Кленова ДНК полимеразы I из E.coli. В качестве праймеров использовали синтетические олигонуклеотиды. Специфическую терминацию синтеза обеспечивали добавлением в реакционную смесь помимо четырех типов dNTP (один из которых был радиоактивно мечен по альфа положению фосфата) еще и одного из 2',3'-дидезоксинуклеозидтрифосфатов (ddATP, ddTTP, ddCTP или ddGTP), который способен включаться в растущую цепь ДНК, но не способен обеспечивать дальнейшее копирование из-за отсутствия 3'-ОН группы. Отношение концентраций dNTP/ddNTP авторы подбирали экспериментально, так, чтобы в итоге получить набор копий ДНК различной длины. Таким образом, для определения первичной структуры исследуемого фрагмента ДНК требовалось провести четыре реакции копирования: по одному типу терминаторов в каждой из реакций. После этого полученные продукты разгонялись в полиакриламидном геле на соседних дорожках и по расположению полос определялась последовательность нуклеотидов.

 

№34. Гибридизация ДНК. Перенос по Саузерну.

Если водный раствор ДНК нагреть до 100оС и повысить рН до 13, то ДНК диссоциирует на 2 цепи (денатурирует), так как комплементарные связи между основаниями разрушаются. В 1961 году было обнаружено, что этот процесс обратим: выдерживание ДНК при температуре 65оС вело к восстановлению структуры двойной спирали. Этот процесс называется ренатурация или гибридизация. Процессы гибридизации происходят между любыми одинарными цепями, если они комплементарны: ДНК - ДНК, РНК - РНК, ДНК - РНК.

Исследуемую ДНК гидролизуют рестриктазами, фракционируют электрофорезом, переносят разделенные фрагменты на нитроцеллюлозный фильтр и проводят реакцию гибридизации с мечеными олигонуклеотидами. Этот метод был разработан Саузерном в 1975 году. В отечественной литературе его принято называть «южный блоттинг». «Блоттинг» - в переводе с английского означает «промокашка», «саузерн» - «южный».

Молекулы ДНК разгоняют в агарозном геле электрофорезом. ДНК в геле денатурируют щелочью. Щелочь нейтрализуют и пластину геля покрывают листом нитроцеллюлозы. Сверху на нитроцеллюлозу помещают стопку листов фильтровальной бумаги, обеспечивая медленный ток буферного раствора через гель в направлении, перпендикулярном направлению электрофореза. ДНК диффундирует из геля и связывается с нитроцеллюлозным фильтром. После прогревания фильтра при 80оС в вакууме ДНК необратимо связывается с нитроцеллюлозой. Расположение полос иммобилизованной ДНК точно соответствует их расположению в геле.

ДНК, связанную с нитроцеллюлозным фильтром, можно гибридизовать с радиоактивно меченой ДНК. Блоттинг по Саузерну является исключительно полезным также и для локализации изучаемых генов в определенных фрагментах, полученных в результате гидролиза различными рестриктазами гибридных молекул ДНК, хромосомной ДНК и т. д.

Аналогичным методом на нитроцеллюлозу переносят молекулы РНК (Северный блоттинг) и белка (Западный блоттинг).

 

 

№35. Генная инженерия дрожжей.

E. Coli – удобная система для экспериментов на прокариотах. Для эукариотических клеток данные системы не подхядят, т к эукариотические клетки обладают специфическими функциями( митоз, мейоз, дифференцировка). Для исследования растительных или животных белков лучше использовать родственные клетки. Но в ряде случаев можно использовать простые для культивирования дрожжевые клетки.

Дрожжевые клетки удобны как продуценты, проявляют высокую генетическую стабильность, не подвергаются фаголизису, не выделеяют токсины.

Для клонирования хорошо зарекомендовали себя S. Cerevisiae. Их геном состоит из 16 хромосом и полностью секвенирован. Содержит 6000 генов. ДНК больше в 3 раза, чем у бактерий.

Экспрессия чужеродных генов может быть функциональной и нефункциональной. В случае функциональной экспрессии чужеродные белки в условиях in vivo проявляют свою активность. Для клонирования фрагментов ДНК в дрожжевых клетках как правило используют челночные векторы: гены можно клонировать в E. Coli, а затем исследовать их экспрессию в дрожжевых клетках. Из дрожжевых клеток трудно выделить значительное количество векторных молекул. Эту процедуру проводят в 2 этапа. Сначала выделяют суммарную ДНК, а затем трансформируют ей E. Coli отбирают клоны по селективным признакам.

Известны 5 типов дрожжевых векторов: YIp – не способны реплицироваться в дрожжевых клетках, но осуществляют их трансформацию путём интеграции в гомологичный участок хромосомы путём двойного кроссинговера. Сконструирован на основе плазмиды ColEI и маркера Leu2.

Вектор YEp. Состоят из плазмиды pBR322, репликатора 2-микронной плазмиды и дрожжевого селективного маркера. Для поддержания вектора в дрожжах являются сайты ori и STB 2-микронной плазмиды. Маркирован LEU2.

Вектор YRP.Имеют хромосомныерепликаторы ARS. Способен к автономной репликации. Нестабилен. Применяется когда появляется необходимость иметь умеренное число копий клонируемого гена.

Вектор YCp –кромехромосомных репликаторовсодержат центромерыдрожжевых хромосом. Проявляет стабильность при митозе и мейозе. Хотя и меньшую, чем ествественные хромосомы. В процессе мейоза вектора сегрегируют по Менделю, с образованием кольцевых мини-хромосом.

Вектор YLp – создан на базе вектора YRp путём их линеаризации и присоединения к концам теломер взятых из внехромосомной линейной рДНК ресничной инфузории. Вектор использовали для клонирования дрожжевых теломер и анализа их структуры.

Для трансформации дрожжи делают:

1). Плазмида вводится в протопласт. Протопласты получают с помощью бета-гликозилаз (удаляют клеточные стенки). Сорбитол – предотвращает осмотического шока протопластов. Далее протопласты с трансформированной ДНК инкубируют с этиленгликолем и хлористым кальцием. И высевают на твёрдые селективные среды. Там происходит регенерация клеточных стенок и образование колоний трансформантов. Полиэтиленгликоль способствует слиянию протопластов.

2). Трансформация целых клеток обрабатываемых 0,1 м ацетатом лития в присутсвии этиленгликоля. Данный метод проще, но эффективность ниже.

3). Электропорация.

 

 

№36. Генная инженерия бацилл.

 

Обнаружено, что на инфекционность существенное влияние оказывает форма молекул фаговых ДНК, которую они принимают in vivo. Фаги с кольцевой или линейной, но быстро замыкающейся ДНК (лямбоидные фаги) характеризуются наибольшей эффективностью трансфекции.

Успешное проведение экспериментов на кишечной палочке стало стимулом для проведения аналогичных исследований с другими прокариотическими организмами. Наибольших успехов удалось достичь с клетками Bacillus subtilis. B. subtilis - непатогенный почвенным микроорганизм, растущий в строго аэробных условиях. Бациллы не образуют токсинов и непатогенны ни для животных, ни для человека, тогда как клеточная стенка E. coli содержит эндотоксин, который довольно трудно отделить от продуктов генной инженерии. Кроме того, клеточная стенка бацилл имеет простую структуру и бактерии могут секретировать многие белки в культуральную жидкость. 20 различных видов бацилл секретируют в культуральную жидкость более 40 ферментов с внеклеточной локализацией. E. coli секретирует в среду относительно мало белков, а выделение и очистка их затруднены. В бациллах также обнаружены плазмиды и фаги, которые к настоящему моменту уже хорошо изучены.

Чужеродные гены клонируют в так называемых челночных векторах. Эти вектора с одинаковым успехом реплицируются в клетках нескольких хозяев, в данном случае, в клетках E. coli и B.subtilis. Векторы были получены комбинацией in vitro фрагментов этих плазмид.

Гены E. coli со своими регуляторными районами не функционируют в B.subtilis, поэтому были использованы собственные гомологичные районы B.subtilis.

Для конструирования рекомбинантной ДНК, содержащей в своем составе ген, который должен экспрессироваться, придерживаются следующей стратегии. Синтезируют кДНК или из клонотеки выделяют клетки, несущие фрагмент генома с нужным геном, и клонируют их в соответствующем векторе. Фрагменты геномной ДНК подвергают модификации - удаляют из них некодирующие области и участки соседних генов. Часто для проведения этой операции необходимо секвенирование данного фрагмента ДНК. Затем конструируются промежуточные рекомбинантные ДНК, в которых ген помещается под контроль бактериальных регуляторных элементов (промотор, оператор, точка связывания с рибосомами). Эти регуляторные элементы выделяют из гибридных плазмид, сконструированных специально как источники регуляторных элементов. Полученная конструкция встраивается в подходящий вектор, например, pBR 322, и ген экспрессируется в бактериальной клетке.

 

Однако удобнее встраивать ген в специальный вектор для экспрессии, который уже содержит регуляторные элементы, обеспечивающие активную экспрессию после введения рекомбинантной плазмиды в бактериальную клетку. К таким эффективным регуляторным участкам относится, например, сильный промотор гена бэта-лактамазы (ген устойчивости к пенициллину, входящий в состав плазмиды pBR 322). Ряд генов, в том числе и ген инсулина, встраивали в сайт рестрикции Pst I, который расположен в структурной части гена. Промотор этого гена обеспечивает эффективную транскрипцию, которая продолжается до тех пор, пока РНК-полимераза не дойдет до сигнала терминации встроенного гена.

В качестве примера маркирования вектора могут служит первые эксперименты с E. coli, а точнее с одной из ее плазмид рBR322, проведенные Гилбертом для получения инсулина. Плазмида pBR322 содержит 2 гена, которые определяют устойчивость к ампициллину и тетрациклину. Рестриктаза PstI расщепляет плазмиду в средней части гена, кодирующего фермент устойчивости к апициллину. После расщепления плазмиды на ее концы с помощью концевой трансферазы надстраивали последовательность из четырех нуклеотидов с остатками гуанина. Затем, как обычно, с помощью лигаз "вшивали" ген проинсулина, получая рекомбинантную ДНК. Встроенный в плазмиду фрагмент ДНК нарушал синтез фермента, разрушающего ампициллин, но ген, обеспечивающий устойчивость к тетрациклину, оставался активным. Трансформированные таким образом клетки E. coli синтезировали гибридный белок, содержащий последовательности пенициллазы и проинсулина, поэтому биологически активный инсулин получали путем отщепления пенициллазы и средний сегмент проинсулина.

С другой стороны, если фрагмент чужеродной ДНК встраивается в один из генов устойчивости, то последний инактивируется. Следовательно, успешное встраивание фрагмента чужеродной ДНК в один из этих генов легко детектировать по исчезновению у бактерий устойчивости к данному антибиотику

Свойством бацилл является их трансформируемость клеток. Двунитивая ДНК адсорбируется на поверхности клеток и преобразовывается в однонитевые фрагменты. Проникшие ДНК заменяется путём рекомбинации гомологичного участка хромосомной ДНК, каждый фрагмент ДНК интегрируется в хромосому. Бацилл использ для производства БАВ и пищевых в-в. Векторы для клонирования ДНК в клетках Б. Субтилис создаются на основе других видов бацилл. Благодаря последовательности нуклеотидов геномной ДНК интегрирующие векторы стабильно встраиваются в геном клетки хозяина. Примером интегрирующего вектора является плазмида которая содержит фрагмент умеренного фага SP бета. Эта плазмида содержит ген устойчивости к хлорамфениколу. Клетки ткани приобретают этот признак. Интеграция плазмиды происходит по механизму гомологичной рекомбинации.

 

№38. Новые подходы к анализу экспрессии генома: использование двухгибридных систем для анализа белог-белковых взаимодействий.

 

Загрузка...

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти