ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Международная научно- практическая конференция « Малая энергетика-2005»

Загрузка...

Иванова И.Ю., Попов С.П., Тугузова Т.Ф., Институт систем энергетики им. Мелентьева СО РАН, г. Иркутск, Россия

Симоненко А.Н., Красноярская государственная архитектурно-строительная академия, г. Красноярск

Одной из основных причин кризисных явлений с энергообеспечением, участившихся в последнее время в отдаленных районах России, является проблема топливоснабжения, особенно в топливодефицитных и труднодоступных в транспортном отношении районах. Наиболее остро эта проблема выражена у потребителей, не охваченных централизованным электроснабжением, которые рассредоточены по территории, удалены от топливных баз и предприятий по переработке топлива. Это в основном поселки, горнодобывающие прииски, поселения малочисленных народов, охотников, скотоводов и рыбаков, фермерские хозяйства. Потребители этой категории обеспечиваются энергией от объектов малой энергетики -энергоисточников мощностью от десятков кВт до нескольких МВт. Основными проблемами энергоснабжения таких, изолированных от энергосистем, потребителей являются дальний транспорт топлива и зависимость от его поставок. В наиболее труднодоступных районах эти проблемы усугубляются многозвенной транспортной схемой и ограниченностью сроков сезонного завоза.

Большая часть энергоисточников малой мощности расположена в северо­восточных регионах России, что объясняется экономико-географическими

характеристиками этой зоны, слабой освоенностью и преимущественно ресурсной специализацией. Более 30% всех дизельных электростанций России расположено в северных районах Дальнего Востока, в которых доля ДЭС в суммарной выработке электроэнергии достигает 12-15% в отличие от других регионов, где этот показатель в основном не превышает 1%.

Источники малой мощности, используемые для автономного энергоснабжения имеют, как правило, низкие технико-экономические показатели - удельные расходы топлива составляют 500-600 г у.т./кВт·ч и 300-350 кг у.т./Гкал [1]. Дизельные электростанции и котельные зачастую находятся в неудовлетворительном состоянии. Моторесурс практически исчерпан: износ агрегатов достигает 80-90 %. Требуется замена оборудования на современное с улучшенными технико-экономическими показателями и восстановление или строительство новых зданий.

Цена дизельного топлива у наиболее труднодоступных потребителей достигает 400-600 дол./т, котельно-печного - 60-100 дол./т у.т., что приводит к высокой себестоимости производства электроэнергии - 25-30 цент/кВт·ч и тепла - 50-70 дол./Гкал. Тариф для населения у этих потребителей составляет: на электроэнергию - 3-7 цент/кВт·ч, на тепло - 10-30 дол./Гкал. Для поддержания допустимых тарифов на энергию из бюджетов различных уровней выделяются значительные дотации на завоз топлива, содержание энергоисточников и покрытие кассового разрыва, вызванного необходимостью заблаговременного кредитования закупок и транспорта топлива. В последние годы из-за недостатка финансовых средств потребность автономных энергоисточников в топливе удовлетворяется только на треть, что влечет за собой ограниченный режим энергоснабжения.

Развитие малой энергетики необходимо направить на приведение существующих и строящихся энергетических объектов в соответствие с современными требованиями по экономической эффективности, надежности и экологической чистоте. Возможность применения современных энергоустановок малой мощности в настоящее время обусловлена наличием на отечественном рынке большого выбора оборудования для малой энергетики. Стоимость таких установок колеблется в широком диапазоне в зависимости от типа, единичной мощности, степени автоматизации, комплектации, завода-изготовителя. При выборе перспективных технологических и энергетических решений необходимо в максимальной степени учитывать природно-географические и социально-экономические особенности территории.

Одним из вариантов развития малой энергетики, позволяющих сократить объемы потребления органического топлива, может стать применение энергоустановок, использующих возобновляемые природные энергоресурсы. Особенностью возобновляемых природных энергоресурсов является неравномерность их проявления по территории и во времени. Возобновляемые источники энергии (ВИЭ) в силу этой специфики не могут полностью заменить эксплуатируемые в настоящее время источники энергии, всвязи с чем, их необходимо рассматривать как дополняющий энергоисточник, который позволяет вытеснить часть органического топлива, сэкономив тем самым средства на его закупку и доставку.

В качестве наиболее целесообразных типов ВИЭ следует рассматривать ветроэнергетические установки (ВЭУ), малые и микро-ГЭС (МГЭС), системы солнечного теплоснабжения (ССТ) и фотоэлектрические установки (ФЭУ).

Применение возобновляемых источников энергии позволит:

· вытеснить часть органического топлива и ослабить зависимость от внешних его поставок;

• снизить себестоимость производства энергии;

• сократить объемы бюджетных дотаций для энергоснабжения малых
населенных пунктов;

• уменьшить негативное влияние энергетики на природную среду;

• создать дополнительный стимул для развития высоких технологий в России;

• улучшить комфортность проживания.

Основной причиной незначительных масштабов применения возобновляемых источников энергии в настоящее время является их капиталоемкость и низкое значение показателя использования установленной мощности, связанное с неравномерностью и неопределенностью энергоресурсов, а также неплотным графиком нагрузки изолированных потребителей [2].

С ростом цен на органическое топливо возобновляемые источники энергии становятся конкурентоспособными, а сами проекты все более привлекательными для инвестирования. В дальнейшем этому будет способствовать снижение стоимости оборудования таких источников при развертывании серийного производства на отечественных предприятиях.

На основе исследований с использованием разработанных авторами обобщенных производственно-финансовых моделей получены зависимости экономической обоснованности (сроков окупаемости) проектов сооружения малых ГЭС, ветро- и гелиоустановок от изменения основных стоимостных показателей - капиталовложений в возобновляемый энергоисточник и цены органического топлива для наилучших значений потенциала возобновляемых природных энергоресурсов. Чтобы поставить проекты сооружения ВИЭ в наиболее благоприятные финансовые условия, форма инвестирования принята как беспроцентный кредит. Возвращение привлеченных капиталовложений производится за счет сокращения ежегодных дотаций из бюджета на содержание существующих энергоисточников и завоз органического топлива вследствие частичного его вытеснения.

Зависимость экономической обоснованности (сроков окупаемости) проектов сооружения ВИЭ от изменения основных стоимостных показателей -капиталовложений в возобновляемый энергоисточник и цены органического топлива для наилучших значений потенциала возобновляемых природных энергоресурсов приведена на рисунке 1 (а, б, в).

При современном уровне удельных капиталовложений в ВЭУ и МГЭС 1,3 - 2,7 тыс. дол./кВт эти установки являются экономически эффективными в режиме совместной работы с ДЭС только при цене дизельного топлива 500-1100 дол./т (рисунок 1 а).

Системы солнечного теплоснабжения при современных стоимостных показателях 130-200 дол./м2, соответствующих российским производителям, могут быть экономически привлекательны только при цене котельно-печного топлива 80-150 долл./т у. т. В настоящее время цена топлива в южных районах Сибири и Дальнего Востока, которые характеризуются наибольшим гелиопотенциалом, составляет 20-40 дол./т у. т (рисунок 1 б).

Фотоэлектрические установки при значениях удельных капиталовложений в них 800-1300 дол./м2 конкурентоспособны с ДЭС только при цене дизельного топлива 2000-3000 дол./т (рис. 1 в).

Граничные значения цен на топливо при сложившихся капиталовложениях в возобновляемые источники энергии для достижения экономической эффективности проектов их сооружения приведены в таблице 1. Для сравнения здесь же представлен современный уровень цен на топливо в районах с максимальными значениями показателей природного потенциала.

Применение ветроэнергетических установок наиболее целесообразно в северо­восточных регионах для потребителей, расположенных на арктическом побережье Красноярского края, Республики Саха (Якутия), в восточной части Магаданской области и на северо-востоке Чукотского АО, а также в Камчатской области и на Курильских островах. Возможность использования ветроэнергетических установок, работающих при высоких скоростях ветра, обусловлена, как уже отмечалось, ветровым режимом этой зоны. Кроме электроснабжения, перспективным направлением является использование ветровых станций для электротеплоснабжения в районах побережья Северного Ледовитого океана, где отопительный период совпадает со временем активных ветров [3].

Следует отметить, что ветровые электрогенераторы для этих регионов должны быть приспособлены к местным условиям, и главным фактором при выборе расчетных параметров, конструктивных и строительных решений является достаточная механическая надежность при сочетании низких температур, порывистости ветра, высокой влажности и сейсмичности.

Применение МГЭС целесообразно у труднодоступных потребителей за исключением тех мест, где возможный створ находится на значительном расстоянии от населенного пункта или необходим водный переход линии электропередачи, а также где водотоки перемерзают в зимнее время. Вместе с тем, при определенных условиях -недопоставки и высокая стоимость топлива - с целью его экономии, в дополнение к существующим источникам электроэнергии, использование энергии малых рек может быть эффективно и для сезонных потребителей только в летний период.

Регионами, в которых целесообразно широкомасштабное развитие малой гидроэнергетики, являются среднеширотная полоса Красноярского края и Республики Саха (Якутия), Камчатская область, северные районы Иркутской, Читинской областей, Республики Бурятия и Хабаровского края [3].

Наилучшими показателями гелиопотенциала характеризуются самые южные районы Сибири и Дальнего Востока, а также локальные зоны Республики Саха (Якутия) [3]. На остальной территории по значениям годового прихода радиации и продолжительности солнечного сияния использование солнечной энергии не целесообразно, кроме мест особого природопользования при отсутствии других видов природных энергоресурсов. С экономической точки зрения в настоящее время источники, использующие энергию Солнца, неконкурентоспособны по сравнению с существующими.

Граничные значения удельных капиталовложений в возобновляемые источники энергии (с учетом транспортировки и строительно-монтажных работ) при сложившихся ценах на топливо в сравнении с современным уровнем этих показателей приведены в таблице 2.

Возобновляемые источники энергии в современных ценовых условиях могут быть экономически эффективны либо в случае получения государственной поддержки в виде субсидий производителям оборудования, либо при существенном снижении удельных капиталовложений: для ВЭУ и МГЭС в 1,5-2 раза, для ССТ - в 2-3 раза, для ФЭУ - в 7-9 раз. В настоящее время в соответствии с поручением Правительства Российской Федерации от 31.08.99 г. о разработке программы «Развитие нетрадиционной энергетики России на 2001-2005 годы» максимальная поддержка из федерального бюджета могла составлять до 20% от затрат по проекту сооружения ВИЭ. Таким образом, наиболее конкурентоспособными из возобновляемых источников энергии являются ветроэнергетические установки и малые ГЭС.

На основе анализа обеспеченности территории возобновляемыми природными энергоресурсами и условий экономической эффективности применения ВИЭ, авторами оценены масштабы применения источников, использующих энергию ветра и малых водотоков, как наиболее распространенных природных энергоресурсов, для энергоснабжения изолированных потребителей восточных регионов России (таблица 3).

Верхняя оценка рынка ВЭУ и МГЭС для изолированных потребителей восточных регионов России составляет 140 млн. дол., а суммарная мощность соответствующего комплектного оборудования 70-100 МВт. Использование ВИЭ в таких масштабах позволит вытеснить 40-60 тыс. т органического топлива в год на сумму 20-30 млн. дол., что составляет около 10% потребляемого топлива для энергоснабжения изолированных потребителей [4].

Список использованной литературы

1. Иванова И.Ю., Тугузова Т.Ф., Попов С.П., Петров Н.А. Малая энергетика Севера: проблемы и пути развития / Под ред. Б.Г. Санеева. - Новосибирск: Наука, 2002. - 180 с.

2. Ресурсы и эффективность использования возобновляемых источников энергии в России / Коллектив авторов // Под общей редакцией П.П. Безруких. - Спб.: Наука, 2002.-314 с.

3. Иванова И.Ю., Попов С.П., Симоненко А.Н., Тугузова Т.Ф. Энергетика Севера России в XXI веке / Энергетика XXI века: Условия развития, технологии, прогнозы // Л.С. Беляев, А.В. Лагерев, В.В. Посекалин и др.; Отв. ред. Н.И. Воропай. - Новосибирск: Наука, 2004. - С. 319-334.

4. Попов С.П., Иванова И.Ю., Тугузова Т.Ф. Возобновляемые источники энергии: эффективность и масштабы использования для потребителей Восточной Сибири и Дальнего Востока // Перспективы энергетики. - 2003. - Том 7. - С. 47-55.

 

Проблемы малой энергетики

 

Автор:

Ханин В.А.

Источник: журнал "Наука и техника"

Рис. 1 Вид панелей солнечной батареи

Рис. 2 Солнечные батареи с концентратором

Рис. 3 Вид традиционного ветрогенератора

Как только человек произошел от обезьяны, его потребности в энергии сильно выросли. Теперь ему нужно было не только добыть пищу, но и приготовить ее, обогреть себя, сделать орудия труда. В первую очередь в качестве энергоносителей человечество освоило то, что буквально лежало под ногами, недаром классическим способом получения огня считается трение друг о друга разнообразных деревянных конструкций. Помимо дров, в ходе истории использовались (и используются сейчас) уголь, торф, масло, парафин, а также многое другое – все, что горит, чем можно запастись и использовать для отопления, освещения, приготовления пищи.

Нужно заметить, что все источники энергии на земле, кроме, разве что, ядерных – результат работы солнца, естественного термоядерного реактора. В процессе эволюции Земли эта энергия была накоплена растительностью и за сотни миллионов лет превратилась в привычные для нас уголь, торф, нефть, газ. Эти энергоносители, в основном, и взяла на вооружение энергетическая промышленность. Но сжигание угля сильно вредит экологии, нефть и газ могут закончиться уже в обозримом будущем, а торф или другая биомасса низкокалорийны и идут на нужды населения. Успешно работают мощные гидроэлектростанции, но плата за это – непоправимый ущерб рекам, на которых они расположены и сельскому хозяйству в их поймах. Впоследствии вошли в строй атомные электростанции, которые при безаварийной работе почти не загрязняют окружающую среду. Однако, как показал опыт, авария на АЭС чревата серьезными последствиями.

Современный человек ассоциирует энергию прежде всего с электричеством. Электрическая энергия - это то же тепло от сгорания газа, угля или урана в ядерном реакторе, только преобразованное в удобный для транспортировки и использования вид. То, что мы сейчас относим к альтернативной энергетике, уже давно было освоено: вспомните ветряные и водяные мельницы, парусные суда или обыкновенные бочки с водой, стоящие на даче в летний солнечный день. Поэтому деление источников энергии на традиционные и альтернативные во многом условно. Альтернативные источники энергии считаются таковыми прежде всего потому, что их в балансе мировой энергетики гораздо меньше, чем традиционных, как правило не более 30% у самых развитых в этом отношении стран.

Основными направлениями в альтернативной энергетике считаются использование энергии солнца, ветра, гидроэнергетики малых рек, энергии биогаза, энергии приливов и геотермальной энергии. Последние два способа получения энергии уже давно и успешно используются, поэтому подробнее расскажем лишь о тех, которые могут быть интересными для мелких и домашних хозяйств, и прежде всего в аспекте получения электрической энергии.

Солнечная энергия

Есть место, где энергия светового излучения солнца занимает лидирующие позиции. Это космос. Здесь солнечным батареям не мешают ни погода, ни короткий солнечный день. В открытом космосе около Земли на один квадратный метр полупроводниковой солнечной батареи приходится приблизительно 1,4 кВт световой энергии солнца. Это и позволяет сотням искусственных спутников бесперебойно выполнять свои разнообразные задачи. Если же с этими батареями опуститься на землю, то придется считаться с рядом факторов, которые существенно понизят их отдачу, а в некоторых случаях вообще сделают их использование невозможным. Прежде всего, часть световой энергии солнца поглотит даже самая чистая атмосфера. И чем ниже солнце над горизонтом, тем больший путь проходят в атмосфере его лучи и тем меньше их остается нам. Это делает малоэффективной установку солнечных батарей в высоких широтах, несмотря на то, что там полгода длится полярный день.

Особенности климата заставляют применять солнечные батареи в тех местах, где больше солнечных дней в году, конечно, если речь идет о промышленном получении энергии этим способом. Для мелких хозяйств, скорее всего, такая энергетическая установка будет невыгодна, за исключением случаев, о которых будет сказано дальше.

Солнечные батареи чаще всего выпускаются в виде плоских панелей (рис. 1), которые удобно устанавливать, например, на крышах домов. Они состоят из плоской основы, на которой закрепляются фотоэлементы. Один такой элемент дает довольно низкое напряжение, поэтому несколько элементов соединяются последовательно или параллельно для увеличения соответственно напряжения или тока. Фотоэлементы таких батарей чаще всего изготавливаются из кремния. Дороговизна таких панелей подтолкнула к тому, что появился другой их вид: здесь сам генерирующий элемент выполнен на поверхности трубки, а солнечный свет концентрируется на них с помощью отражателей, называемых концентраторами. Концентратор может быть параболической или другой формы (рис. 2). В этом случае на фотоэлементе создается очень большая плотность излучения, и трубка нуждается в постоянном охлаждении, для чего через нее пропускают воду или другое охлаждающее вещество. Сам фотоэлемент изготавливается уже из других материалов, способных работать при мощных излучениях. В солнечных батареях с концентраторами сам фотоэлемент имеет меньшую площадь, чем в плоских панелях, а потому при одинаковой мощности такая батарея будет иметь меньшую стоимость. А возможно и наоборот, использование более дорогих и эффективных фотоэлементов в солнечных батареях с концентраторами обеспечит большую мощность при той же цене.

Эффективность обычных плоских солнечных панелей заметно повышается, если снабдить их устройством слежения, которое направляет их точно на Солнце. Батареи с параболическими концентраторами вообще без такого устройства работать не будут.

Преимущество солнечных батарей состоит в том, что они превращают свет непосредственно в электрическую энергию, здесь нет ни нагрева воды, ни движущихся элементов, если не считать относительно простых устройств слежения, они бесшумны и не выбрасывают вредных веществ. Однако с их экологической чистотой можно поспорить: для изготовления материалов солнечных элементов требуется напряженная работа химической промышленности.

Другим недостатком полупроводниковых солнечных батарей является их низкий коэффициент полезного действия, порядка 10 – 15 процентов, остальная энергия солнечного света либо отражается, либо уходит на нагрев элемента, а нагрев в свою очередь еще больше понижает КПД. Различные фирмы и группы ученых сейчас заявляют об изобретении новых материалов для солнечных батарей с более высоким КПД (более 30%), но в массовом производстве они пока не замечены.

Наряду с непосредственным преобразованием солнечного света в электричество есть огромное количество проектов, где на солнце нагреваются вода или воздух, например, в одном из таких проектов предлагается часть пустыни Сахара покрыть крышей, под которой будет сильно нагреваться воздух, затем он будет выходить через огромной высоты трубу. При этом в трубе должна возникать мощная тяга, которая сможет вращать турбину. Это, конечно, сложнее обычных плоских панелей, но такие проекты могут быть гораздо выгоднее и экологически чище, к тому же их можно разместить в тех местах, которые могут быть непригодными для других видов хозяйства, например, в той же Сахаре или зоне радиоактивного заражения чернобыльской АЭС. О том, как солнце используется для нагрева воды, умолчим, ведь любой сельский житель об этом знает.

Энергия ветра

Также довольно широко используется, поскольку считается относительно дешевой. Целые леса ветрогенераторов можно встретить в Европе и Америке.

Возможность установки ветрогенераторов также зависит от климата, а конкретнее – от средней скорости ветра в данной местности. Трудно спрогнозировать, каковы будут скорость и направление ветра в определенный момент. Но если рассматривать большие временные промежутки, соизмеримые со сроком эксплуатации ветряка, то можно довольно точно сказать, что, например, в течение года в месте его установки будет 4000 часов со скоростью ветра более 4 м/с, что обеспечит гарантированную генерацию, условно говоря, 1000 КВт·ч в год. В частности, у нас средняя скорость ветра составляет около 5 м/с, что вполне пригодно для получения ветровой энергии, так как рекомендуемая скорость ветра для этих целей 4 м/с и более.

Как известно ветрогенератор - это большая машина. Можно даже сказать - грандиозное сооружение. Но любое сооружение невозможно построить без строительной техники, такой как экскаваторы, бульдозеры, краны,телескопические погрузчики. Вся эта техника очень нужна и незаменима при строительстве любых строительных объектов.

Для ветрогенератора с длиной лопасти три метра при скорости ветра 5 м/с полученная энергия составит 2280 Ватт·с, энергия при той же скорости ветра в течение часа - 2,28 КВт·ч. Однако воздушный винт ветрогенератора никогда не уловит всю эту энергию, поэтому реальная его мощность будет меньше в два – три раза.

Самый традиционный ветрогенератор изображен на рис. 3. Конструкция установлена на мачте, высота которой в зависимости от типа и мощности генератора может составлять от нескольких до нескольких десятков метров. Под действием ветра приходит во вращение воздушный винт. Внутри корпуса находится сам генератор, редуктор, повышающий обороты, и другие элементы, обеспечивающие работу генератора. Он может вращаться на мачте, подстраиваясь под изменяющееся направление ветра. Генератор дополняется модулем, где располагается электронное оборудование, которое служит для создания стабильного напряжения, пригодного для питания всевозможных бытовых приборов, а также обеспечивает зарядку аккумуляторной батареи.

Если говорить о ветровой энергетике для сельского подворья или дачи, то средняя мощность такого ветряка может быть равной одному киловатту. Это позволит включить несколько ламп, холодильник и телевизор, но для нагревательных приборов энергии может уже не хватить.

Недостатки ветряных электростанций – слабая отдача энергии при низких скоростях ветра и шум. Поскольку мощность ветрогенератора пропорциональна кубу скорости ветра, при ее уменьшении в два раза мощность уменьшится в восемь раз. Мощные же ветроэлектростанции излучают инфразвуковые волны, которые не слышны, но действуют отрицательно на человека, прежде всего, на его нервную систему, приводя к повышенной утомляемости и другим расстройствам.

Поскольку ветер дует не всегда, для постоянной работы ветровой энергетической установки нужны мощные аккумуляторы, которые накапливают энергию в ветреное время и отдают ее во время штиля. Это же касается и солнечных батарей.

Энергия малых рек

Существует огромное множество прудов, созданных для разведения рыбы. Многие из них из-за невыгодности уже не используются по своему назначению. Они уже перегорожены плотинами, поэтому весь возможный ущерб природе здесь уже причинен и ничто не мешает установить на этих плотинах гидротурбины небольшой мощности. Правда, этому, как всегда, мешает недостаток денег, но при правильном расчете эти затраты обычно окупаются. Несмотря на относительно малую мощность, от единиц до десятков киловатт, у такой энергетической установки будут преимущества перед солнечной батареей или ветряком. Поток воды через нее достаточно стабилен во времени, что позволит отказаться от мощных аккумуляторных батарей.

Отдача от такой электростанции зависит от расхода воды в реке и от высоты падения воды.

Ее недостатками могут быть трудности работы зимой и при спуске воды в водоеме, а также повышенный шум.

Чтобы не тратить больших денег на приобретение водяной турбины, ее подобие вполне можно построить силами, скажем, местной МТС. Малая гидроэлектростанция, наверное, не покроет всех потребностей в электроэнергии, но сама себя окупит и послужит небольшим (а, возможно, и большим) подспорьем хозяйству.

Получение биогаза

Это по сути альтернативный способ сжигания топлива биогенного происхождения, то есть древесины, соломы и просто бытовых отходов. Сейчас проектами получения биогаза интересуется промышленность, а использование его частными лицами и мелкими хозяйствами – большая редкость.

Биогаз получают в специальных реакторах, где отходы под действием бактерий разлагаются с выделением смеси метана и углекислого газа. Иногда не требуется даже постройка реакторов: отходы можно насыпать в большую яму, покрыть слоем грунта, не забыв при этом сделать устройства для вывода газа. Затем образовавшийся газ можно накапливать и сжигать на электростанциях как обыкновенный природный газ.

Плюсы такого альтернативного сжигания – получение относительно дешевого топлива, уменьшение вреда экологии, частичное решение проблемы бытовых отходов, ведь после откачки газа оставшуюся массу можно использовать в качестве удобрений, конечно, если она содержит в себе только биогенные отходы без токсичных компонентов.

Практические варианты

Многим хотелось бы иметь у себя на даче солнечную батарею или, например, ветряк и не зависеть от энергетических компаний с их все повышающимися тарифами. Но в каждом конкретном случае, в зависимости от климата, возможностей и целей, нужно выбрать самый выгодный вариант. Если нужна большая мощность, например, для обогрева дома зимой, больше всего подойдет ветровой генератор, при этом аккумуляторы могут вообще не понадобиться. Если нужен резервный источник тока, то наоборот, главное – аккумулятор, а чтобы обрести некоторую независимость от энергетических компаний, придется комбинировать солнечные батареи с ветряками и аккумуляторами, а если есть возможность - обратить внимание на местный пруд, объединиться с соседями и установить миниатюрную гидроэлектростанцию.

Промышленные ветрогенераторы, скорее всего, будут дороги для простого сельского жителя, а чтобы получить сколько-нибудь значительную мощность от солнечных батарей, придется выложить почти астрономическую сумму денег. Небольшой ветряк можно изготовить и самостоятельно, подавляющее большинство ветряков на личных подворьях – самодельные. Как правило, в них используются генераторы от тракторов или грузовых машин. Эти генераторы рассчитаны на напряжение бортовой сети – 12 вольт, кроме того, оно будет зависеть от скорости ветра, поэтому чтобы от ветряка могли питаться стандартные бытовые приборы, генератор обязательно должен быть дополнен преобразователями напряжения и стабилизаторами.

При этом, правда, чаще всего полностью обеспечить себя собственным электричеством не получится, а если и получится, то это электричество может оказаться дороже, чем казенное.

Приведем пример: стоимость самодельного ветряка, если основные детали купленные, может составить 1000 грн., без учета затрат на ремонт в течение срока эксплуатации. Срок эксплуатации – 5 лет. Среднегодовая выработка электроэнергии – 1000 КВт·ч, или 5000 КВт·ч в течение всего срока эксплуатации. Цена одного киловатт-часа составит 20 копеек. Цифры эти весьма приближенные и оптимистические, так что можно сказать, что для получения более дешевого электричества, чем в промышленности, нужно будет сильно потрудиться. Все-таки в промышленной энергетике достигаются более высокие КПД, ее работа точно рассчитана, научно и экономически обоснована. Если же упомянуть ветряки заводского изготовления, то при той же мощности их цена будет раз в десять выше, а срок эксплуатации - всего раза в три. Соответственно, и цена киловатт-часа будет выше в три раза.

На сегодняшний день проекты постройки малых электростанций, работающих на энергии воды, ветра и солнца, могут быть выгодны главным образом в тех районах, куда трудно или невыгодно проводить линии электропередачи. Но если промышленность начнет массовый выпуск недорогих мини-электростанций, население сочтет их приобретение выгодным, а цены на традиционные энергоносители будут и дальше повышаться ударными темпами, у миниатюрной энергетики есть реальные шансы найти свою нишу.

Загрузка...

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти