ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Как сплеталась бактериальная паутина

Существование первых клеток было шатким. Окружающая среда непрерывно менялась, и каждая случайность представляла новую угрозу их выживанию. Перед лицом всех враждебных сил — жесткого облучения солнечным светом, столкновений с метеоритами, наводнений, засух и извержений вулканов — бактериям приходилось захватывать и удерживать энергию, воду и пищу, чтобы оставаться живыми и целыми. Каждый кризис, несомненно, сметал значительную часть первых островков жизни с лица планеты, и это быстро закончилось бы полным уничтожением, если бы не две жизненно важные особенности тех первых форм: бактериальные ДНК способны к точному воспроизведению и осуществляют его с неимоверной скоростью. В силу своего огромного количества бактерии снова и снова творчески реагировали на все угрозы и развивали разнообразные адаптивные стратегии. Так они постепенно распространялись, сначала в водной среде, а затем и в поверхностных слоях осадочных пород и почвы.

Очевидно, наиболее важная задача состояла в том, чтобы развить достаточное разнообразие метаболических способов извлечения энергии и пищи из окружающей среды. Одним из первых изобретений бактерий стала ферментация, т. е. расщепление Сахаров и преобразование их в энергетические носители — молекулы АТФ, которые подпитывают энергией все клеточные процессы26. Эта инновация позволила бактериям, способным к ферментации, добывать химические вещества в земле, грязи и воде, защищаясь тем самым и от жесткого солнечного облучения.

Некоторые из ферментаторов выработали, помимо этого, способность поглощать азот из воздуха и перерабатывать его в различные органические соединения. Связывание азота, т. е. непосредственный захват его из воздуха, требует огромных затрат энергии, и даже сегодня эта задача под силу лишь немногим специализированным бактериям. Поскольку азот является ингредиентом протеинов во всех клетках, все ныне существующие организмы для своего выживания нуждаются в бактериях, связывающих азот.

В самом начале эпохи бактерий фотосинтез — «несомненно самое важное метаболическое усовершенствование в истории жизни на планете»27 — стал первичным резервом жизненной энергии. Первые процессы фотосинтеза, изобретенные бактериями, отличались от тех, что сегодня происходят в растениях. Вместо воды в качестве источника водорода они использовали сероводород — газ, источаемый вулканами. Они соединяли его с солнечным светом и СО2 воздуха, образуя органические соединения, и никогда не вырабатывали кислород.

Эти адаптивные стратегии не только позволяли бактериям выживать и развиваться, но и постепенно начали изменять окружающую их среду. Фактически именно бактерии, почти с самого начала своего существования, сформировали первые петли обратной связи, которые в конце концов должны были неминуемо привести к появлению тесно взаимосвязанной системы — жизни и ее окружения. И хотя химия и климат ранней Земли способствовали развитию жизни, это благоприятное состояние не могло бы поддерживаться бесконечно долго без бактериальной регуляции28.

По мере того как железо и другие элементы вступали в реакции с водой, высвобождался газообразный водород; он поднимался сквозь атмосферу, где разлагался на атомы. Поскольку эти атомы слишком легки для того, чтобы их удерживало земное тяготение, весь водород должен был улетучиться, учитывая бесконтрольность процесса; через какой-нибудь миллиард лет всем океанам на планете предстояло исчезнуть. К счастью, вмешалась жизнь. На поздних стадиях фотосинтеза стал высвобождаться и поступать в воздух свободный кислород, как это происходит и сегодня, и некоторая его часть соединялась с восходящими потоками газообразного водорода, образуя при этом воду; так сохранялся определенный уровень влажности на планете и предотвращалось испарение океанов.

Тем не менее постоянный отбор СО2 из атмосферы в процессе фотосинтеза вызвал другую проблему. В начале эпохи бактерий энергия солнечного излучения была на 25% меньше, чем сейчас, и СО2 в атмосфере был совершенно необходим, чтобы создавать тепличный эффект и поддерживать температуру планеты в приемлемом диапазоне. Если бы отбор СО2 происходил без какой-либо компенсации, Земля бы замерзла и ранние формы бактерий погибли бы.

Эта опасная тенденция была остановлена ферментирующими бактериями, которые, возможно, сформировались еще до появления фотосинтеза. В процессе производства молекул АТФ из Сахаров ферментаторы также вырабатывали метан и СО2 в виде отходов. Последние поступали в атмосферу, где и восстанавливали планетарный тепличный эффект. Таким образом, ферментация и фотосинтез стали взаимно балансирующими процессами системы ранней Гайи.

Солнечный свет, проходивший сквозь атмосферу древней Земли, все еще содержал обжигающую ультрафиолетовую радиацию, и теперь бактериям приходилось балансировать между защитой от облучения и необходимостью получать солнечную энергию для фотосинтеза. Это привело к эволюции многочисленных сенсорных систем и двигательных механизмов. Некоторые виды бактерий мигрировали в воды, богатые определенными солями, выполнявшими роль солнечных фильтров; другие нашли защиту в песке; а некоторые тем временем развили пигменты, в которых поглощались вредоносные лучи. Многие виды организовывали огромные колонии — многослойные «скатерти» из микробов, где верхние слои обжигались и умирали, но защищали нижний слой своими мертвыми телами29.

Помимо защитной фильтрации, бактерии выработали также механизмы для починки ДНК, поврежденных радиацией, в том числе специально для этого предназначенные ферменты. Сегодня почти все организмы по-прежнему содержат в себе такие «ферменты-ремонтники» — еще одно пережившее миллиарды лет изобретение микрокосмоса30.

Вместо того чтобы использовать для починки собственный генетический материал, бактерии иногда заимствовали фрагменты ДНК у своих соседей по густонаселенному окружению. Этот метод постепенно эволюционировал в непрерывный обмен генами, который и определил самое эффективное направление эволюции бактерий. У высших форм жизни рекомбинация генов различных особей связана с воспроизведением, но в мире бактерий два эти феномена протекают независимо. Бактериальные клетки воспроизводятся бесполым путем, но зато они непрерывно обмениваются генами. По словам Маргулис и Саган,

Мы обмениваемся генами «вертикально» — через поколения, — тогда как бактерии меняются ими «горизонтально» — непосредственно со своими соседями из того же поколения. В результате получается, что генетически неустойчивые бактерии функционально бессмертны, а для эукариотов пол связан со смертью31.

Из-за небольшого числа постоянных генов в бактериальной клетке — как правило, меньше одного процента от числа генов в ядерной клетке — бактерии по необходимости работают командами. Разные виды сотрудничают и помогают друг другу, предоставляя дополнительный генетический материал. Крупные сообщества таких бактериальных команд могут функционировать с согласованностью единого организма, выполняя задачи, которые индивидуально не под силу никакой из них.

К концу первого миллиарда лет с момента возникновения жизни Земля кишела бактериями. Были изобретены тысячи биотехнологий — большинство из них, безусловно, известно сегодня, — и, посредством сотрудничества и непрерывного обмена генами, микроорганизмы начали регулировать условия для жизни на всей планете, как они делают это и поныне. Фактически многие виды бактерий ранней эпохи микрокосма дожили, существенно не изменившись, до наших дней.

В ходе последующих стадий эволюции, микроорганизмы образовывали союзы и эволюционировали совместно с растениями и животными, и сегодня наша окружающая среда в такой степени переполнена бактериями, что почти невозможно определить, где кончается неодушевленный мир и где начинается жизнь. Мы склонны ассоциировать бактерии с болезнью, но они жизненно важны и для нашего выживания, равно как и для выживания животных и растений. «Если отбросить в сторону наши поверхностные различия, можно сказать, что все мы представляем собой ходячие сообщества бактерий, — пишут Маргулис и Саган. — Весь мир мерцает, как ландшафт пуантилиста, составленный из крошечных живых существ»32.

Кислородный кризис

Вследствие того, что бактериальная паутина разворачивалась и заполняла все доступные пространства в водах, скалах и грязевых низинах, ее энергетические потребности привели к серьезному водородному истощению атмосферы. Углеводы, играющие существенную роль во всех процессах жизни, представляют собой сложные структуры из атомов углерода, водорода и кислорода. Чтобы построить эти структуры, фотосинтезирующие бактерии извлекали углерод и кислород в виде СО2, подобно современным растениям. Кроме того, они получали водород в форме газа из воздуха и из сероводорода, извергающегося из вулканов. Однако легкий газообразный водород продолжал улетучиваться в космос, и со временем одного сероводорода стало недоставать.

Огромное количество водорода, конечно, есть в воде (Н2О), однако связи между молекулами водорода и кислорода в воде гораздо прочнее, чем между двумя атомами водорода в его газе (Н2) или в сероводороде (H2S). Бактерии, осуществляющие фотосинтез, не были способны разорвать эти крепкие связи, пока особый вид сине-зеленых бактерий не изобрел новый тип фотосинтеза, который навсегда решил проблему водорода.

Новый эволюционный тип бактерий, предков современных сине-зеленых водорослей, использовал солнечный свет с более высокой энергией (с более короткими длинами волн) для того, чтобы расщеплять молекулы воды на составляющие их водород и кислород. Они забирали водород для формирования Сахаров и других углеводов, а кислород уходил в воздух. Это изъятие водорода из воды, представляющей один из наиболее обильных ресурсов планеты, стало чрезвычайной эволюционной победой, которая очень глубоко повлияла на последующее раскрытие жизни. И Линн Маргулис убеждена в том, что «пришествие кислородного фотосинтеза было тем исключительным событием, которое в конечном итоге привело к формированию нашей современной окружающей среды»33.

Благодаря неограниченным запасам водорода, новые бактерии достигли небывалых успехов. Они быстро распространялись по поверхности Земли, покрывая камни и песок сине-зеленой пленкой. И даже сегодня они вездесущи, прорастая в прудах и бассейнах, на влажных стенах и ставнях — везде, где доступен солнечный свет и вода.

Однако этот эволюционный успех был оплачен дорого. Как и все быстро распространяющиеся живые системы, сине-зеленые бактерии производили отходы в огромных количествах, и в данном случае отходы оказались крайне токсичными. Это был газообразный кислород — побочный продукт нового типа фотосинтеза на основе воды. Свободный кислород токсичен потому, что он легко вступает в реакции с органическими веществами, производя так называемые свободные радикалы, которые оказывают весьма разрушительное воздействие на углеводы и другие важные биохимические соединения. Так же легко кислород вступает в реакции с атмосферными газами и металлами, вызывая сгорание или коррозию — две наиболее знакомые формы окисления, т. е. соединения вещества с кислородом.

Поначалу Земля легко поглощала кислородные отходы. Вулканические и тектонические источники поставляли достаточно металлов и серных соединений, которые быстро связывали свободный кислород, не давая ему закрепиться в воздухе. Однако абсорбируя кислород в течение миллионов лет, связывающие кислород металлы и минералы насытились, и тогда токсичный газ стал накапливаться в атмосфере.

Около двух миллиардов лет назад кислородное загрязнение привело к катастрофе в беспрецедентных глобальных масштабах. Многочисленные виды исчезли полностью, и всей бактериальной паутине пришлось фундаментально перестраиваться, чтобы выжить. Было развито множество защитных механизмов и адаптивных стратегий, и, наконец, кислородный кризис привел к одной из величайших и наиболее удачных инноваций во всей истории жизни:

Осуществляя один из величайших переворотов всех времен, [сине-зеленые] бактерии изобрели метаболическую систему, которой требовалось то самое вещество, которое представляло собой смертельный яд... Дыхание кислородом — это исключительно эффективный способ отвода и использования реактивности кислорода. Это — идеально контролируемое сгорание, в котором расщепляются органические молекулы и производятся углекислый газ и вода, а в придачу огромное количество энергии... Микрокосм сделал больше, чем просто приспособился: он изобрел работающую на кислороде машину, которая навсегда изменила саму жизнь и ее земную обитель34.

С этим замечательным изобретением в распоряжении сине-зеленых бактерий оказались два дополнительных механизма — генерация свободного кислорода через фотосинтез и его поглощение через дыхание. Теперь они могли приступить к формированию петель обратной связи, которые впредь будут регулировать содержание кислорода в атмосфере, поддерживая здесь тонкий баланс, необходимый для развития новых форм, дышащих кислородом35.

Содержание свободного кислорода в атмосфере в итоге стабилизировалось на 21%. Это значение определилось порогом воспламеняемости. Если бы содержание кислорода упало до 15%, ничто не могло бы гореть. Организмы не смогли бы дышать и погибли бы. Если бы содержание кислорода в воздухе поднялось до 25%, то сгорело бы все. Возгорание происходило бы спонтанно, и всю планету охватили бы пожары.

И Гайя в течение миллионов лет поддерживала атмосферный кислород на уровне, наиболее благоприятном для всех растений и животных. Кроме того, в верхних слоях атмосферы постепенно образовался слой озона (трехатомных молекул кислорода), и с тех пор он защищает жизнь на Земле от жесткого ультрафиолетового излучения Солнца. Так была подготовлена сцена для появления и эволюции более крупных форм жизни — грибов, растений и животных; все это произошло уже в сравнительно короткие сроки времени.

Ядерная клетка

Первым шагом в направлении высших форм жизни стал симбиоз — новое направление эволюционного творчества. Это случилось около 2,2 миллиардов лет назад и привело к эволюции эукариотических («ядерных») клеток, которые в дальнейшем стали фундаментальными элементами всех растений и животных. Ядерные клетки гораздо крупнее и сложнее, чем бактерии. Если бактериальная клетка содержит единственную цепочку ДНК, свободно плавающую в клеточной жидкости, то ДНК в эукариотической клетке плотно закручена в хромосомы, которые заключены в мембрану внутри клеточного ядра. Количество ДНК в ядерных клетках в сотни раз больше, чем в бактериях.

Еще одной поразительной особенностью ядерной клетки является обилие органелл — поглощающих кислород маленьких частиц, которые выполняют ряд исключительно специализированных функций36. Анализ внезапного появления ядерных клеток в истории эволюции, а также открытие органелл как отдельных самовоспроизводящихся организмов привело Линн Маргулис к заключению, что ядерные клетки развились в результате длительного симбиоза — постоянного сосуществования различных бактерий и других микроорганизмов37.

Предками митохондрий и других органелл могли быть бактерии-уродцы, которые вторгались в более крупные клетки и воспроизводили себя внутри них. Многие из завоеванных клеток, очевидно, погибали, а вместе с ними и их завоеватели. Однако некоторые хищники не уничтожили своих хозяев, но стали сотрудничать с ними, и в конце концов естественный отбор позволил выжить и эволюционировать лишь организмам, склонным к сотрудничеству. Возможно, клеточные мембраны развились как средство защиты генетического материала клеток-хозяев от нападения завоевателей.

За миллионы лет взаимоотношения, основанные на сотрудничестве, стали еще более координированными и тесными, причем органеллы производили потомство, хорошо приспособленное к жизни внутри более крупных клеток, а крупные клетки становились все более зависимыми от своих постояльцев. Со временем бактериальные сообщества стали до такой степени взаимозависимы, что могли функционировать лишь как единые, целостные организмы:

Жизнь продвинулась еще на один шаг, от создания сетей свободного генетического обмена к синергии симбиоза. Отдельные организмы сливались воедино, образуя новые целостности, которые представляли собой нечто большее, чем сумма их частей38.

Признание симбиоза как главной эволюционной силы имеет важный философский подтекст. Все крупные организмы, включая и нас самих, служат живыми свидетельствами того факта, что деструктивные поведенческие механизмы на большой дистанции несостоятельны. В конце концов агрессоры всегда уничтожают самих себя и расчищают путь для тех, кто знает, как сотрудничать и развиваться. Жизнь в гораздо меньшей степени является конкурентной борьбой за выживание, чем триумфом сотрудничества и творчества. Действительно, со времени создания первых ядерных клеток эволюция шла через все более сложные формы сотрудничества и коэволюции.

Эволюционный путь через симбиоз позволил новым формам жизни многократно и всесторонне использовать хорошо опробованные специализированные технологии в разных комбинациях. Например, хотя бактерии получают пищу и энергию, применяя огромное разнообразие остроумных методов, из их метаболических нововведений животными используется только кислородное дыхание — специальная функция митохондрий.

Митохондрии присутствуют и в растительных клетках, которые, кроме того, содержат так называемые хлоропласты — зеленые «солнечные станции», ответственные за фотосинтез39. Эти органеллы замечательным образом напоминают сине-зеленые бактерии, которые, по всей вероятности, и были их предками. Маргулис полагает, что проникающие бактерии, как правило, переваривались завоеванными микроорганизмами, но некоторые разновидности, очевидно, сопротивлялись этому перевариванию внутри хозяев40. Они приспосабливались к новому окружению, продолжая вырабатывать энергию через фотосинтез; более крупные клетки вскоре стали зависимы от поступления этой энергии.

Обеспечив ядерным клеткам доступ к эффективному использованию солнечного света и кислорода, новые симбиотические взаимоотношения дали им и третье великое эволюционное преимущество — возможность двигаться. Если компоненты бактериальной клетки медленно и пассивно плавают в клеточной жидкости, то составляющие ядерной клетки, похоже, передвигаются более осмысленно; клеточная жидкость течет единым потоком, и вся клетка может ритмично растягиваться или сокращаться или быстро передвигаться как единое целое — что видно на примере кровяных клеток.

Как и множество других жизненных процессов, быстрое движение было изобретено бактериями. Самый быстрый член микрокосма — крошечное, напоминающее волосок создание, названное спирохетой («скрученный волос») и известное также как «бактерия-штопор», поскольку двигается по спирали подобно штопору. Прицепляясь симбиотически к более крупным клеткам, подвижная спирохета дает этим клеткам огромное преимущество быстрого перемещения — способности избегать опасности и искать пищу. Со временем бактерии-штопоры утеряли свои индивидуальные черты и эволюционировали в хорошо известные «клеточные кнуты» — flagellae, cilia, и т. п., — которые служат средством перемещения для множества различных ядерных клеток, как бы подстегивая их своими волнообразными движениями.

Объединенные преимущества трех типов симбиоза, описанных в предыдущих параграфах, вызвали вспышку эволюционной активности, которая, в свою очередь, породила огромное разнообразие эукариотических клеток. Обладая двумя эффективными способами выработки энергии и радикально возросшей мобильностью, новые симбиотические формы жизни мигрировали в новые окружения, эволюционируя в первые растения и в первых животных, которым в конце концов суждено было покинуть воду и выбраться на сушу.

Как научная гипотеза, концепция симбиогенеза — создания новых форм жизни через слияние различных видов — насчитывает едва тридцать лет. Но как культурный миф эта идея, похоже, стара, как само человечество41. Религиозные эпические творения, легенды, волшебные сказки и другие мифические истории всего мира населены фантастическими созданиями — сфинксами, русалками, гриффонами, кентаврами и другими, — появившимися на свет в результате смешения одного или более видов. Как и клетки-эукариоты, эти создания состоят из хорошо знакомых компонентов, но их комбинации непривычны и поразительны.

Изображения этих гибридов зачастую ужасны, но многие из них, как это ни забавно, считаются приносящими удачу. Например, бог Ганеша, который обладает человеческим телом с головой слона, — один из наиболее почитаемых в Индии божеств; ему поклоняются как символу удачи и помощнику в преодолении препятствий. Похоже, что каким-то образом коллективному человеческому бессознательному с древнейших времен известно, что продолжительный симбиоз в высшей степени благотворен для всякой жизни.

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти