ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Системний аналіз у безпеці життєдіяльності

1.2.1. Системно-структурний підхід та системний аналіз — методологічна основа безпеки життєдіяльності

Безпека життєдіяльності, як порівняно нова галузь науки, що ство­рюється в наш час на стику природничих, гуманітарних і технічних наук, використовує методи цих наук, водночас розробляючи свої власні методи. Отримавши розвиток на основі досягнень наук про людину, суспільство, природу, БЖД почала створювати свої методи, викорис­товуючи накопичений досвід. З іншого боку, комплексний характер БЖД вимагає використання комплексу методів інших наук.

У природі і суспільстві окремі явища не існують відірвано одне від одного, вони взаємопов'язані та взаємозумовлені. У своїй діяльності ми повинні враховувати цю об'єктивну дійсність з її зв'язками та взає­мовідносинами. І якщо нам необхідно пояснити будь-яке явище, то передусім слід розкрити причини, що породжують його.

Головним методологічним принципом БЖД є системно-структурний підхід, а методом, який використовується в ній, — системний аналіз.

Системний аналіз це сукупність методологічних засобів, які використовуються для підготовки та обґрунтування рішень стосов­но складних питань.

Під системою розуміється сукупність взаємопов'язаних компо­нентів, які взаємодіють між собою таким чином, що досягається певний результат (мета).

Під компонентами (елементами, складовими частинами) системи розум­іють не лише матеріальні об'єкти, а й стосунки і зв'язки між цими об'єкта­ми. Будь-який пристрій є прикладом технічної системи, а рослина, тварина чи людина — прикладом біологічної системи. Система, одним з елементів якої є людина, зветься ерготичною. Прикладами ерготичних систем є системи «людина природне середовище», «людина — машина», «людина машина — навколишнє середовище» тощо.

Взагалі будь-який предмет може розглядатися як системне утворення Системи мають свої властивості, яких немає і навіть не може бути у еле­ментів, що складають її. Ця найважливіша властивість систем, яка зветься емерджентністю, лежить в основі системного аналізу.

Принцип системності розглядає явища у їхньому взаємному зв'яз­ку, як цілісний набір чи комплекс. Мета чи результат, якого досягає система, зветься системотворним елементом.

Будь-яка система є складовою частиною іншої системи або ж входить до іншої системи як її елемент. З іншого боку, окремі елементи ! будь-якої системи можуть розглядатися як окремі самостійні системи.

У сфері наук про безпеку системою є сукупність взаємопов'язаних людей, процесів, будівель, обладнання, устаткування, природних об'єктів тощо, які функціонують у певному середовищі для забезпечення безпеки.

Системою, яка вивчається у безпеці життєдіяльності, є система «людина життєве середовище».

Системний аналіз у безпеці життєдіяльності — це мето­дологічні засоби, що використовуються для визначення небезпек, які виникають у системі «людина життєве середовище» чи на рівні її компонентних складових, та їх вплив на самопочуття, здо­ров'я і життя людини.

Сама сутність дисципліни «Безпека життєдіяльності» вимагає ви­користання системно-структурного підходу. Це означає, що при дос­лідженні проблем безпеки життя однієї людини чи будь-якої групи людей їх необхідно вивчати без відриву від екологічних, еконо­мічних, технологічних, соціальних, організаційних та інших компонентів системи, до якої вони входять. Кожен з цих елементів впливає на інший, і всі вони перебувають у складній взаємозалеж­ності. Вони впливають на рівень життя, здоров'я, добробуту людей, соціальні взаємовідносини. У свою чергу від рівня життя, здоров'я, добробуту людей, соціальних взаємовідносин тощо залежать стан ду­ховної і матеріальної культури, характер і темпи розвитку останньої. А матеріальна культура є вже тим елементом життєвого середовища, який безпосередньо впливає як на навколишнє природне середовище, так і саму людину. Виходячи з цього, системно-структурний підхід до и нищ, елементів і взаємозв'язків у системі «людина життєве середовище» є не лише основною вимогою до розвитку теоретичних засад І>ЖД, але передусім важливим засобом у руках керівників та спец­іалістів з удосконалення діяльності, спрямованої на забезпечення здо­рових і безпечних умов існування людей.

Системно-структурний підхід необхідний не лише для дослідження, рівня безпеки тієї чи іншої системи (виробничої, побутової, транспортної, соціальної, військової тощо), але і для того, щоб визначити вплив окремих чинників на стан безпеки.

Системний аналіз безпеки як метод дослідження сформувався на­прикінці 50-х років XX ст., коли виникла нова наукова дисципліна, що зветься «Безпека систем».

Безпека систем — це наука, яка застосовує інженерні та уп­равлінські принципи для забезпечення необхідної безпеки, вчасного виявлення ризику небезпек, застосування засобів по запобіганню та контролю цих небезпек протягом життєвого циклу системи та з урахуванням ефективності операцій, часу та вартості.

Ідея або концепція безпеки систем уперше була використана у ракето­будуванні наприкінці 40-х років XX cm. У подальшому вона відокремилася а окрему дисципліну та використовувалась переважно у ракетобудівних, авіабудівних та аерокосмічних об'єднаннях. До 40-хроків конструктори та інженери при розробці безпечних конструкцій орієнтувалися виключно па метод спроб та помилок. Такий підхід виправдовував себе у часи, коли (системи та конструкції були відносно простими. Однак з часом системи і ставали все складнішими, а швидкість і маневреність літаків зростали, збільшилася ймовірність значних наслідків аварії системи або однієї з ба­гатьох її складових. Такі чинники призвели до виникнення системного інжепірингу, з якого потім зрештою виникла концепція безпеки систем.

Джеффрі Вінколі, один з провідних спеціалістів у галузі безпеки, що працюють на космодромі ім. Джона Кеннеді (США), пише: «Перші роки нашої національної програми космічних польотів були сповнені катастроф і драматичних прикладів аварій. У той час часто констатувалося, що «наші ракети не літають, а вибухають». Багато успіхів, яких досягла космонав­тика, значною мірою залежать від успішного запровадження та виконання загальної програми безпеки систем. Однак слід зазначити, що катастрофа «Челенджера» у січні 1986року залишається постійним нагадуванням усім, що незалежно від того, наскільки точним та всебічним є проект чи опера­тивна програма безпеки, точне і правильне керування цією системою є одним з найважливіших елементів успіху. Цей фундаментальний принцип справед­ливий для будь-якої галузі промисловості».

Зрештою, те, що сказано про аварію « Челенджера», повною мірою мож­на віднести і до найбільшої техногенної катастрофи за всю історію розвитку цивілізації, що трапилась того ж трагічного 1986 р. в Україні, — аварії на Чорнобильській АЕС, а фундаментальний принцип, про який говорить Дж. Вінколі, є справедливим для всіх сфер, яких стосується БЖД.

Програми, розроблені спочатку військовими та фахівцями у галузі космонавтики, з часом були пристосовані до використання у промис­ловості в таких галузях, як ядерна енергетика, нафтопереробка, перевезення вантажів, хімічна промисловість і пізніше у комп'ютерному програмуванні.

Однак вимоги до контролю безпеки (письмові та фізичні) переважно вводилися лише після того, як сталася аварія, або після того, як хтось далекоглядно передбачив її можливість і запропонував контроль, щоб ' запобігти такій події. Незважаючи на те, що перша з цих причин часто була і головною при введенні правил і нормативів з безпеки, друга та­кож має важливе значення у прийнятті багатьох вимог з безпеки, які використовуються сьогодні у промисловості. Обидві ці причини є осно­вою, на якій базується діяльність інженерів з охорони праці.

Перший метод створення правил з безпеки після того, як нещасний випадок або аварія сталися, другий метод передбачення можливої аварії та спроба її запобігання за допомогою використання різних конт­рольних операцій, регулювання тощо, є саме тим методом, який викори­стовує спеціаліст з безпеки систем, коли аналізує якусь конструкцію, умови праці чи технологію. Однак там, де це можливо, концепція без­пеки систем випереджає на крок можливі інциденти і насправді нама­гається виключити ризик цих подій з процесу взагалі. З появою безпеки систем як науки метод забезпечення безпеки і надійності систем пере­творився на метод гарантії безпеки систем, який названо «визначення, аналіз та виключення». Цей метод може успішно використовуватись для дослідження будь-яких систем «людина життєве середовище».

Успішним застосуванням останнього методу можна назвати заходи, які були прийняті країнами Європейського співтовариства після вели­кої аварії в Севезо (Італія). Згідно з «Директивами по Севезо», всі нові об'єкти повинні мати точне обґрунтування їхньої безпеки.

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти