ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


СРАВНЕНИЕ СРЕДНИХ ЗНАЧЕНИЙ КОЛИЧЕСТВЕННЫХ ПРИЗНАКОВ ДВУХ НЕЗАВИСИМЫХ ВЫБОРОК

Часто на практике возникает задача сравнения средних значений исследуемого показателя, признака для двух разных генеральных совокупностей. Например, одинаков ли средний уровень коэффициента IQ для мальчиков и девочек одного и того же возраста. При решении такой задачи необходимо, чтобы исследуемый признак был измерен в количественной шкале. Таким образом, будем считать, что в результате эксперимента в качестве исходных данных у нас имеются две выборки необязательно одинакового объема: х1, х2, …, хn и y1, y2, …, ym, где n = m. Необходимо обращать внимание на то, чтобы эти две выборки были независимыми, т.е. чтобы элементы 1 выборки не влияли на значения элементов 2 выборки. Для решения поставленной задачи воспользуемся общей схемой проверки статистической гипотезы.
1 этап. Выдвигаются две гипотезы: основная нулевая о том, что средние значения исследуемого признака двух рассматриваемых ГС статистически одинаковы и альтернативная гипотеза о том, что эти средние значения статистически различны.
Н0 : х = у, где х – среднее значение 1 ГС
Н1 : х = у, где х – среднее значение 2 ГС
2 этап. Задаемся уровнем значимости .
3 этап. Вычисляется наблюдаемое значение статистики критерия. Для этого сначала по исходным выборкам вычисляется среднее значение х и у
2 2
(см. меры центральной тенденции), а также дисперсии Sх Sy . Тогда наблюдаемое значение статистического критерия вычисляется по следующей формуле: 2 2
tнабл. = (х – у) : ((n - 1) Sx + (m – 1) Sy ) : (n + m – 2) ( 1/n + 1/m)
4 этап. Находим критическое значение статистики критерия. В нашем случае статистика критерия имеет t-распределение Стьюдента с числом степеней свободы
= n + m – 2
Поэтому для нахождения критического значения необходимо воспользоваться статистической таблицей распределения Стьюдента. В этой таблице находим столбец, соответствующий величине 1 - /2, если таблица называется квантили распределения или величине /2, если таблица называется верхние процентные точки распределения. В этой же таблице находим строку, соответствующую числу степеней свободы = n + m – 2, на пересечении выбранных строки и столбца и находится требуемое нам критическое значение tкр.
5 этап. Делаем вывод о правильности той или иной гипотезы по следующему правилу:
1) если - tкр< tнабл. < tкр, то принимается нулевая гипотеза Н0, т.е.на основе имеющихся данных мы делаем вывод о том, что средние значения двух рассматриваемых генеральных совокупностей статистически одинаковы на уровне значимости .
2) если же tнабл.< - tкр или tнабл. > tкр, то принимается альтернативная гипотеза Н1, т.е. делается вывод о том, что средние значения двух рассматриваемых ГС статистически различны на уровне значимости .

Пример: был проведен эксперимент по исследованию влияния усовершенствованного пособия (вводный материал, подготавливаемый к восприятию изучаемого предмета) на успеваемость по определенному разделу математики. 50 учащихся были разбиты случайным образом на две группы: 25 (1 группа) знакомились с усовершенствованным пособием, а 25 (2 группа) не знакомились, в конце эксперимента всем учащимся был предложен тест на усвоение понятий определенного раздела математики. В качестве измеряемых признаков рассматривалось количество правильных ответов. Проверить гипотезу о наличии или отсутствии влияния усовершенствованного пособия на успеваемость по математике.
В нашем случае в качестве измеряемой переменной рассматривалось количество правильных ответов, поэтому она измерена в количественной шкале. Так как учащиеся разбивались на 2 группы случайно, то в результате эксперимента мы получили две независимых выборки. х1, х2, …, х25 и у1, у2, …, у25. По полученным выборкам были найдены средние значения х=7,65;
2 2
у=6,0 и дисперсии Sx=6,5 Sy=5,9 n=25 m=25 =0,05

tнабл. > tкр., то мы должны принимать альтернативную гипотезу Н1 о статистическом различии средних значений. Имеется влияние усовершенствованного пособия на среднюю успеваемость по математике на уровне значимости 0,05 (5% ошибок допускается). Глядя на соотношение между х и у (в нашем случае х>у), делаем вывод, что усовершенствованное пособие повышает среднюю успеваемость по математике.
Примечания.
1. Рассмотренный в этом параграфе критерий должен применяться для выборок, извлеченных из ГС и имеющих нормальное распределение с одинаковыми дисперсиями.
2. Если исходные выборки извлечены не из нормальной ГС, то необходимо воспользоваться критерием, рассмотренным далее в параграфе 17 или критерием этого параграфа, но при этом помнить, что полученные выводы будут приближенными, т.е. могут оказаться неправильными.
3. Предположение о равенстве дисперсий может легко, если брать обе выборки одинакового объема.
4. Рассмотренный в этом параграфе критерий в литературе обычно называется t-критерий Стьюдента.

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти