ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Дробово-лінійне програмування

Дробово-лінійне програмування відноситься до методів лінійного програмування, тому що має цільову функцію, записану у нелінійному вигляді. Задача дробово-лінійного програмування у загальному вигляді записується наступним чином

при обмеженнях

,

де постійні коефіцієнти і .

 

Графічний метод

Розглянемо задачу дробово-лінійного програмування у вигляді

 

(5.1)

при обмеженнях

(5.2)

Будемо вважати, що

Для розв’язання цієї задачі знайдемо область припустимих розв’язків, яка визначається обмеженнями (5.2). Нехай ця область не є пустою множиною.

Із виразу (5.1) знайдемо :

,

, де .

Пряма проходить через початок координат. При деякому фіксованому значенні кутовий коефіцієнт прямої також фіксований і пряма займе певне положення. При зміні значень пряма буде повертатися навколо початку координат (див. рисунок).

Графічна інтерпретація моделі дробово-лінійного програмування

 

Встановимо, як буде себе вести кутовий коефіцієнт при монотонному зростанні . Знайдемо похідну від по .

 

.

 

Знаменник похідної завжди додатній, а чисельник від не залежить. Значить, похідна має постійний знак і при збільшенні кутовий коефіцієнт буде тільки зростати або тільки спадати, а пряма буде повертатися тільки в одну сторону. Якщо кутовий коефіцієнт прямої має додатнє значення, тоді пряма повертається проти годинникової стрілки, при від’ємному значенні кутового коефіцієнта – за годинниковою стрілкою. Після встановлення напрямку обертання, знаходимо вершину або вершини багатокутника, у яких функція приймає значення, або встановлюємо необмеженість задачі. При цьому можливі наступні випадки.

1. Область припустимих розв’язків обмежена, максимум і мінімум досягаються у її кутових точках

2. Область припустимих розв’язків необмежена, але існують кутові точки, у яких цільова функція приймає максимальне і мінімальне значення

3. Область припустимих розв’язків необмежена і має місце один із екстремумів. Наприклад, мінімум досягається у одній із вершин області і має місце так званий асимптотичний максимум

4. Область припустимих розв’язків необмежена. Максимум і мінімум є асимптотичними

 

Зведення задачі до симплексного методу

Задачу дробово-лінійного програмування можна звести до задачі лінійного програмування і розв’язати симплексним методом. Для цього позначимо

,

при умові

 

і введемо нові змінні .

Тоді задача набуде вигляду

 

при обмеженнях

Після знаходження оптимального розв’язку одержаної задачі, і використовуючи вищевикладені співвідношення, знайдемо оптимальний розв’язок вихідної задачі дробово-лінійного програмування.

 

Метод множників Лагранжа

Нехай задано задачу нелінійного програмування

при обмеженнях

.

 

Припустимо, що функції і є неперервними разом із своїми частинними похідними.

Обмеження задано у вигляді рівностей, тому для розв’язку задачі використаємо метод відшукування умовного екстремуму функції багатьох змінних.

Для розв’язування задачі складається функція Лагранжа

де - множники Лагранжа.

За необхідною умовою існування екстремуму функції, знайдемо частинні похідні

прирівняємо частинні похідні до нуля і одержимо систему

 

 

Розв’язком системи є множина точок, у яких цільова функція може мати екстремальне значення. Необхідно відмітити, що умови розглянутої системи є необхідними, але не недостатніми. Тому не кожний одержаний розв’язок визначає точку екстремуму цільової функції. Застосування методу буває виправданим, коли заздалегідь припускається існування глобального екстремуму, який співпадає з єдиним локальним максимумом або мінімумом цільової функції.

Дослідження функції на екстремум за заданою ОПР

Найбільше та найменше значення функції знаходиться:

- у критичних точках ОПР;

- у критичних точках на границях ОПР;

- у вершинах ОПР

Критичні точки за необхідною умовою існування екстремуму функції це точки, в яких частинні похідні функції дорівнюють нулю.

 

 

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти