ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Рівняння пресування по Куніну і Юрченко

Серед рівнянь пресування, виведених різними авторами, багато одержаниі емпірично, тобто шляхом математичної обробки експериментальних даних. В цьому відношенні є типовим рівняння по Н. Ф. Куніну і В. Д. Юрченко.

Своє рівняння пресування автори одержали математичною обробкою експериментальних даних, отриманих при ущільненні пластичних і крихких порошків ( , графіту, селітри, кам'яної солі і ін.). Побудовані залежності показали, що для всіх досліджуваних матеріалів при збільшенні тиску пресування р об'єм матеріалу, що ущільнювався , зменшується, а щільність збільшується. У вузькому інтервалі тиску збільшення щільності пропорційне початковій щільності і приросту тиску :

, (2.117)

де – збільшення густини при прирості тиску на величину ;

– множник пропорційності, , який показує відносну зміну щільності на одиницю тиску;

– насипна щільність.

Оскільки, , то автори пропонують ввести поняття коефіцієнта пропорційності, або коефіцієнта пресування:

(2.118)

і використовувати його надалі при висновку рівняння пресування.

Побудовані на підставі експериментальних даних залежності і від тиску пресування мають однаковий вигляд для всіх ущільнюваних матеріалів (рис.31).

а б в

Рисунок 31 – Залежність коефіцієнта пресування і від тиску пресування

 

Проводячи аналіз одержаних залежностей, можна дійти висновку, що весь процес ущільнення можна розбити на три стадії (області) пресування. У кожній з них протікають процеси, відмінні один від одного (рис.31, в).

На першій стадії пресування (ділянка I, рис. 31) відбувається зближення і ущільнення частинок без їх деформації – ділянка підпресовування. На другій стадії (ділянка II) відбуваються пластична і крихка деформації частинок, взаємне їх обтікання, заповнення міжкристалітних проміжків і утворення компактного тіла.

На третій стадії (ділянка III ) відбувається об'ємне стиснення компактного тіла, що утворилося. При переході від першої області ущільнення до другої і третьої зменшується коефіцієнт пресування, тобто швидкість ущільнення матеріалу.

Для практики найважливіше значення має друга область, де відбувається основне формування властивостей пресовок.

Як видно з рисунку 31, а, залежність від визначається деякою функцією, яка для другої області має експоненціальний хід. Підтвердженням цього є залежність від (рис.31, б), яка в інтервалі практичного тиску виражається прямими лініями, тобто

, (2.119)

або

, (2.120)

або після потенціювання

(2.121)

де ( – кут нахилу прямих на рисунку 31, б до осі абсцис); , тобто значення отримуємо при перетині прямих на рисунку 31, б з віссю ординат.

Якщо узяти елементарну ділянку на прямій (рис. 31, б), то можна записати

. (2.122)

Виходячи з цього можна сказати, що коефіцієнт характеризує відносне зменшення коефіцієнта пресування при зміні тиску на одиницю. Іншими словами, його можна назвати коефіцієнтом втрати стисливості. Для даного матеріалу за одних і тих же умов пресування він постійний.

З виразів (139) і (140), одержимо диференціальне рівняння пресування по Куніну і Юрченко:

. (2.123)

Або, інтегруючи його:

(2.124)

Приймаючи, що , одержуємо

або .

Або після інтегрування:

. (2.125)

Якщо прийняти, що рівняння (147) справедливе до нескінченно великого тиску і щільності при цьому нескінченно великому тиску рівна (гранична щільність), то при і . Тоді рівняння (2.125) прийме вигляд:

. (2.126)

Рівняння (2.126) являє собою закон пластичного пресування порошкоподібних тіл в інтегральній формі. У нього входять три константи (параметра), які характеризують матеріал, який ущільнюється: – умовна гранична щільність; – початковий коефіцієнт пресування, г/(кг∙см); – коефіцієнт втрати стисливості, см2/кг.

Умовна гранична щільність чисельно рівна тій щільності, яка досягається при нескінченно великому тиску. Насправді рівняння (2.126) відображає процес пресування тільки в так званій "пластичній області", де ущільнення відбувається за рахунок пластичної і крихкої деформації частинок порошку. У зв'язку з цим екстраполяція на нескінченно великий тиск носить чисто умовний характер і це робиться для зручності визначення постійної в рівнянні (2.126) при інтегруванні диференціального рівняння.

Не дивлячись на те, що визначається екстраполяцією, вона достатньою мірою відображає властивості пресованого матеріалу в другій області.

Якби рівняння (2.126) було справедливе до нескінченно великого тиску, то повинна б дорівнювати густині монокристала. Насправді ж вона виявляється дещо вищою.

При розрахунках процесу пресування необхідно знати значення і . Один з шляхів їх визначення – складання системи трьох рівнянь з трьома невідомими. Для цього визначається густина пресовок при трьох тисках. Рішення цих рівнянь дає шукані величини. У зв'язку з тим, що рівняння типу (2.126) дещо складні для сумісного вирішення, зручніше користуватися графічним способом.

Для цього на підставі експериментальних даних будується графік в координатах (рис.31, б) і з нього визначається коефіцієнт втрати здатності до стискання:

.

Знаючи і визначають величину і будують графічну залежість в координатах (рис. 32).

Рисунок 32 – До визначення постійних в рівнянні (148)  

Якщо тиск і щільність при випробуваннях відповідають області пластичного пресування, то всі крапки знаходитимуться на одній прямій. Продовження цієї прямої до перетину з віссю ординат дає значення .

Тангенс кута нахилу прямої до осі абсцис рівний відношенню . Знаючи , знаходимо .

Розглянуте рівняння Н. Ф. Куніна і В. Д. Юрченка описує з достатнім ступенем точності процес пресування тільки тих порошків, для яких воно було виведене, що є істотним недоліком.

 

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти