ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Робота по переміщенню провідника і контуру з струмом в магнітному полі

Робота по переміщенню провідника із струмом. Розглянемо провідник із струмом І завдовжки , який може вільно переміщуватись і який знаходиться в однорідному магнітному полі (рис. 10.6).

На цей провідник діє сила Ампера F = IB . Під її дією провідник перемістився на dx з положення 1 в положення 2. Робота, яка здійснюється магнітним полем, дорівнюватиме

dА = Fdx = IBldx = IBdS = ІdФ.

Тут враховано, що dS = Іdx – площа, що пересікається провідником при його переміщенні в магнітному полі; BdS = dФ – потік вектора магнітної індукції, який пронизує цю площу);

dА = ІdФ. (1)

Робота по переміщенню провідника з струмом в магнітному полі дорівнює добутку сили струму на магнітний потік, перерізаний рухомим провідником.

Рис. 10.6

Робота по переміщенню контуру із струмом. Робота dА сил Ампера при даному переміщенні контуру (рис. 10.7) дорівнює сумі робіт по переміщенню провідників АВС (dА1) і CDA (dА2), тобто

dА = dА1 + dА2.

Рис. 10.7

 

Згідно з (1)

dА2 = І(dФ0 + dФ2)

Тут позначено: dФ0 – потік, що пересікається провідником CDA при русі крізь заштриховану поверхню; dФ2 – потік, що пронизує контур в кінцевому положенні).

dА1 = – І(dФ0 + dФ1)

(знак мінус – сили утворюють з напрямом переміщення тупі кути).

dА = – І(dФ2 – dФ1).

Робота по переміщенню замкнутого контуру із струмом в магнітному полі дорівнює добутку сили струму в контурі на змінювання магнітного потоку, зчепленого з контуром.


ЛЕКЦІЯ 11

Магнітне поле в речовині

Магнітний момент електрона і атома

Досліди показують, що всі речовини, внесені в магнітне поле, намагнічуються. Розглянемо причину цього явища з точки зору будови атомів і молекул, поклавши в основу гіпотезу Ампера. Згідно з гіпотезою Ампера в будь-якому тілі існують мікроскопічні струми, зумовлені рухом електронів в атомах і молекулах.

Для якісного пояснення магнітних явищ з достатнім наближенням можна прийняти, що електрон в атомі рухається по кругових орбітах. Електрон, що рухається по одній з таких кругових орбіт, еквівалентний круговому струму і тому він має орбітальний магнітний момент електрона

,

де позначено: – сила струму; – частота обертання електрона по орбіті; S – площаорбіти). Якщо електрон рухається за годинниковою стрілкою (рис. 11.1), то струм направлений проти годинникової стрілки і вектор (відповідно до правила правого гвинта) направлений перпендикулярно площині орбіти електрона, як показано на рис.11.1:

,

де гіромагнітне відношення орбітальних моментів( прийнято писати із знаком мінус, який вказує на те, що напрями моментів протилежні); орбітальний механічничний момент електрона. Модуль (з урахуванням того, що момент імпульсу відносно нерухомої осі окремої -ї частинки масою , що рухається по колу постійного радіуса із швидкістю , визначається формулою = ) дорівнює

Lе = mvr = 2m S,

де , .

Рис. 11.1

Власний механічний момент електрона (спін) – ця невід'ємна властивість електрона подібно його заряду і масі.

Власний (спіновий) магнітний момент ( )

(g гіромагнітне відношення спінових моментів, – власний механічний момент).

Проекція на напрям вектора може мати одне з двох значень: .

Магнетон Бора – це одиниця магнітного моменту електрона: .

Тут позначено: – постійна Планка.

Типи магнетиків

Всяка речовина є магнетиком, тобто здатна під дією поля набувати магнітний момент (намагнічуватися).

Проте намагнічування відбувається по-різному. В зв'язку з цим розрізняють: парамагнетики, діамагнетики і феромагнетики.

Парамагнетіки. Молекули парамагнетиків мають магнітний момент. Проте внаслідок теплового руху молекул їх магнітні моменти орієнтовані безладно, тому парамагнітні речовини не мають магнітних властивостей. При внесенні парамагнетика в зовнішнє магнітне поле встановлюється переважна орієнтація магнітних моментів атомів по полю (повній орієнтації перешкоджає тепловий рух атомів). Таким чином, парамагнетик намагнічується, створюючи власне магнітне поле, яке співпадає по напряму із зовнішнім полем і підсилює його. Цей ефект називається парамагнітним. До парамагнетиків відносяться рідкоземельні елементи, Pt, A1 та ін.

Діамагнетіки. Молекули діамагнетиків не мають магнітного моменту. В зовнішньому магнітному полі індукуються елементарні кругові струми. Оскільки цей мікрострум індукований зовнішнім магнітним полем, то, згідно з правилом Лєнца, у атома з'являється складова магнітного поля, направлена протилежно зовнішньому полю. Наведені складові магнітних полів атомів (молекул) складаються і утворюють власне магнітне поле речовини, яке ослабляє зовнішнє магнітне поле. Цей ефект отримав назву діамагнітного ефекту, а речовини, що намагнічуються в зовнішньому магнітному полі проти напряму поля, називаються діамагнетиками. До діамагнетиків відносяться багато металів (наприклад, Bi, Ag, Au, Сu), більшості органічних сполук, смоли, вуглець. Діамагнітний момент спостерігається і в парамагнетиках, але він значно слабіше за парамагнітний і тому залишається непомітним.

З механізму діамагнетизму виходить, що він притаманний всім речовинам. Якщо магнітний момент атомів великий, то парамагнітні властивості переважають над діамагнітними і речовина є парамагнетиком; якщо магнітний момент атомів малий, то переважають діамагнітні властивості і речовина є діамагнетиком.

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти