ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Механічні вільні гармонічні коливання, їх диференціальне рівняння

Та розв'язок

Нехай матеріальна точка здійснює прямолінійні гармонічні коливання вздовж осі х біля положення рівноваги, яке приймемо за початок координат. Тоді залежність координати х від часу визначається рівнянням:

.

Визначимо швидкість та прискорення точки, що коливається.

;

.

З наведених формул видно, що аммлітуда швидкості та прискорення дорівнють і . При цьому фаза швидкості відрізняється від фази на , а фаза прискорення – на . В моменти часу, коли х = 0, приймає своє найбільше значення; якщо х досягає свого найбільшого від'ємного значення, то досягає найбільшого додатнього значення (див. рис. 13.1).

З виразу для випливає таке диференціальне рівняння гармонічних коливань:

Розв'язок цього рівняння .

 

Рис. 13.1

Сила, що діє на матеріальну точку, що коливається,

пропорційна зміщенню матеріальної точки і направлена в протилежну сторону (до положення рівноваги).

Енергія гармонічних коливань

Розглянемо енергію гармонічних коливань.

Кінетична енергія

.

Потенціальна енергія

.

Повна енергія

.

Електричний коливальний контур. Диференціальне рівняння власних електричних коливань та його розв'язок

Вільні коливання в коливальному контурі, що ідеалізується

Коливальний контур – це коло, що складається з ввімкнених послідовно котушки індуктивністю L, конденсатора ємністю С і резистора опором . Такий контур застосовується для збудження і підтримки електромагнітних коливань (періодичних процесів перетворення енергії електричного поля в енергію магнітного поля і навпаки). В ідеалізованому контурі опор = 0.

Послідовні стадії коливального процесу в ідеалізованомуконтурі і аналогія між електромагнітними і механічними коливаннями наведені на рис. 13.2.

Рис. 13.2

Оскільки R 0, то згідно з законом збереження, повна енергія

.

За відсутності втрат енергії в контурі здійснювались би періодичні незгасаючі коливання, тобто періодично змінювались (коливались) заряд на обкладаннях конденсатора, напруга на конденсаторі і сила струму , що протікає через котушку індуктивності. Отже, в контурі виникають електричні коливання, причому коливання супроводжуються перетвореннями енергій електричного і магнітного полів.

 

Диференціальне рівнянні електромагнітних коливань для ідеалізованого контура.

Для ідеалізованого контура (R 0) згідно з другим правилом Кирхгофа

UС =

де UС = – напруга на конденсаторі; – е.р.с. самоіндукції, яка виникає в котушці у разі протікання в ній змінного струму. Підставивши ці вирази в UС = і врахувавши, що і , отримаємо диференціальне рівняння коливань заряду в контурі:

коливання вільні (в контурі відсутні зовнішні е. р. с. ) гармонічні (R 0)). Заряд на обкладаннях конденсатора змінюється по гармонічному закону

,

де – амплітуда коливань заряду конденсатора з циклічною частотою , яка називається власною частотою контура

і періодом

формула Томсона.

Сила струму в коливальному контурі

.

Напруга на конденсаторі

.

З двох останніх виразів випливає, що коливання струму І випереджають по фазі коливання заряду на /2, тобто якщо струм досягає максимального значення, то заряд (і напруга) перетворюються в нуль, і навпаки.

Згідно з законом збереження енергії

.

 

ЛЕКЦІЯ 13 (додаткова)

Додавання гармонічних коливань

Метод векторних діаграм

Гармонічні коливання можна зобразити графічно, застосувавши метод векторних діаграм. Для цього з довільної точки О на осі х під кутом , який дорівнює початковій фазі коливання, відкладають вектор , модуль якого дорівнює амплітуді А даного коливання (рис. 13.1). Якщо цей вектор почати обертати з кутовою швидкістю , яка дорівнюєциклічній частоті коливань, то проекція кінця вектора переміщуватиметься по осі z і прийматиме значення від – А до +А, авеличина, що коливається, змінюватиметься з часом за законом

,

Рис. 13.1

У фізиці часто застосовують інший метод, який відрізняється від методу векторних амплітуд лише формою. В цьому методі величину, що коливається, представляють комплексним числом. Згідно з формулою Ейлера, для комплексних чисел

,

де – уявна одиниця.

Тому рівняння гармонічного коливання можна записати в комплексній формі:

.

Дійсна частина цього виразу

якраз і є гармонічним коливанням. Позначення Re дійсної частини опускають, тобто записують у вигляді:

і вважають, що величина s, що коливається, дорівнює дійсній частині комплексного виразу, що стоїть в цьому рівнянні справа.

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти