ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Теплове випромінювання, його рівноважність, характеристики

Теплове випромінювання– це світіння тіл, зумовлене нагріванням. Це практично єдиний вид випромінювання, яке перебуває в термодинамічній рівновазі з речовиною, тобто тіло в одиницю часу поглинає стільки ж енергії, скільки і випромінює.

Теплове випромінювання характеризується суцільним спектром, положення максимуму якого залежить від температури. У випадку високих температур випромінюються короткі (видимі та ультрафіолетові електромагнітні хвилі, у випадку низьких – переважно довгі (інфрачервоні)).

Кількісною характеристикою теплового випромінювання служитьспектральна густина енергетичної світимості (випромінюваності) тіла – потужність випромінювання з площі 1 м2 поверхні тіла в інтервалі частот одиничної ширини:

,

де – енергія електромагнітного випромінювання, що випромінюється за 1 с (потужність випромінювання) з площі 1 м2 поверхні тіла в інтервалі частот від до ).

Одиниця спектральної густини енергетичної світимості – Дж/м2.

По спектральній густині енергетичної світимості можна розрахувати інтегральну енергетичну світимість, підсумувавши по всіх частотах:

.

Абсолютно чорне тіло. Розподіл енергії в спектрі випромінювання абсолютно чорного тіла. Закони Кірхгофа і Стефана-Больцмана

Тіло, здатне поглинати за будь-якої температури все падаюче на нього випромінювання будь-якої частоти, називається чорним тілом. Отже, для чорного тіла спектральна поглинальна здатність для всіх частот і температур тотожно дорівнює одиниці . В природі немає абсолютно чорних тіл, проте сажа, чорний бархат та деякі інші тіла в певному інтервалі частот за своїми властивостями наближаються до них.

Поряд з поняттям чорного тілавикористовують також поняття сірого тіла, тобто тіла, поглинальна здатність якого менше одиниці, але однакова для всіх частот і залежить тільки від температури, матеріалу і стану поверхні тіла.

.

Розглянемо теперзакони Кірхгофа та Стефана-Больцмана.

Закон Кірхгофа формулюється так: відношення спектральної густини енергетичної світимості до спектральній поглинальної здатності не залежить від природи тіла; воно є для всіх тіл універсальною функцією частоти (довжини хвилі) і температури:

,

де спектральна густина енергетичної світимості чорного тіла.

Скориставшись законом Кірхгофа, вираз для інтегральної енергетичної світимості тіла можна записати у вигляді:

.

Тоді інтегральна енергетична світимість сірого тіла буде такою:

,

де інтегральнаенергетична світимість чорного тіла.

Закон Стефана—Больцманаформулюється так:енергетична світимість чорного тіла пропорційна четвертому ступеню термодинамічної температури:

,

де – стала Стефана–Больцмана, експерименальне значення якої дорівнює = 5,67·10-8 Вт/(м2·К4) .

Розподіл енергії в спектрі випромінювання абсолютно чорного тіла.

Закон зміщення Віна

Закон зміщення Вінаформулюється так:довжина хвилі , яка відповідає максимальному значенню спектральної густини енергетичної світимості чорного тіла, обернено пропорційна його термодинамічній температурі

,

де b = 2,9·10-3 м·К – стала Віна.

За законом Віна довжина хвилі , на яку припадає мак­симум спектральної випромінювальної здатності, у разі підвищення температури зміщується в бік коротких хвиль.

Розподіл енергії у спектрі випромінювання чорного тіла для різних температур (рис. 21.1) показує, що для наведених температур максиму­ми кривих припадають на інфрачервону частину спектра. На рисунку також заштриховано площі під кривими розподілу для інтервалу довжин хвиль від 0,4 до 0,76 мкм. Вони показують, яка саме частина енергії ви­промінювання припадає на видиму частину спектра при заданих темпе­ратурах.

Рис. 21.1

Щоб одержати закони теп­лового випромінювання, Дж. Релей і Дж. Джінс застосували, на відміну від своїх попередників, методи ста­тистичної фізики, а саме: класичний закон рівномірного розподілу енергії зао ступенями свободи і отримали для спектральної густини енергетичної світимості формулу Релея – Джінса:

,

де – середня енергія осцилятора з власною частотою .

Цей вираз узгоджується з досвідом тількив області малих частот і високих температур.

 

Згідно з законом Стефана – Больцмана

,

а обчислення з використанням формули дає такий результат:

тобто в рамках класичної фізики не вдається пояснити закони розподілу енергії в спектрі чорного тіла. Цей факт було названо "катастрофою класичної фізики".

Квантова гіпотеза Планка. Формула Планка

Недоліки формул Віна і Релея - Джінса вказують на те, що для одержання функції розподілу енергії в спектрі випромінювання треба враховувати додаткові дані, що стосуються механізму випромінювання.

У 1900 р. М. Планк спочатку за результатами дослідних даних одер­жав емпіричний вираз функції , а потім теоретично і формулу, відмовившись від усталеного положення класичної фізики, що енергія будь-якої системи змінюється неперервно. При цьому він основувався на таких припущеннях:

· випромінювання є результатом коливання атомних лінійних вібраторів, які збуджують електромагнітні хвилі будь-яких частот подібно до вібраторів Герца;

· вібратор випромінює енергію не безперервно, а певними порціями – квантами;

· енергія кванта, яка ви­промінюється вібратором, залежить від частоти випромінювання.

Згідно з гіпотезою Планка атомні осцилятори випромінюють енергію не безперервно, а певними порціями квантами: енергія кванта

,

де = 6,625·10-34 Дж·с – стала Планка.

При цьому енергія осцилятора може приймати лише певні дискретні значення, які кратні цілому числу елементарних порцій енергії :

,

Формула Планка має такий вид:

.

Враховуючи, що ( ; ),

отримаємо

.

Зазначимо, що формула Планка блискуче узгоджується з дослідом.

Оскільки формула Планка справедлива для будь-яких частот і тем­ператур, то з неї можна вивести всі відомі закони випромінювання абсолютно чорного тіла (закон Стефана – Больцмана, закон зміщення Віна та ін.).


ЛЕКЦІЇ 22, 23

Квантова теорія атома водню.

Розвиток теорії Бора. Атоми із багатьма електронами

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти