ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


РОЗГОРТКИ ЦИЛІНДРИЧНИХ ТА КОНІЧНИХ ПОВЕРХОНЬ

 

Розгорткою циліндричної та конічної поверхонь, як зазначалося раніше, називають суміщення в одну площину бічної поверхні та основ вказаних поверхонь. Якщо розгортку призматичної чи пірамідальної поверхонь можна побудувати точно, то побудову розгорток циліндричної та конічної (розгортних) поверхонь у нарисній геометрії виконують наближено (шляхом апроксимації), тобто заміною циліндричної, конічної поверхонь відповідно n-гранними призмою чи пірамідою. Для побудови точних розгорток користуються відповідними формулами.

 

Побудова розгортки циліндра

Нехай задано дві проекції циліндра, зрізаного фронтально-проектуючою площиною Ф, і дійсна величина фігури перерізу (рис.5.1), а потрібно побудувати розгортку його нижньої частини.

Розгортка бічної поверхні циліндра має вигляд прямокутника, висота якого Н дорівнює висоті циліндра, а довжина – довжині кола, тобто πd. Для наближеної побудови скористаємося способом апроксимації, тобто заміни циліндричної поверхні 12-гранною призмою (чим більше граней, тим точніша побудова). Для цього коло основи ділимо на 12 частин від точки 11 до 121. Піднімаємо їх по лініях зв’язку на слід Ф2 і отримаємо їх фронтальні проекції 12, 22,.....122.. Дійсна величина фігури перерізу еліпс, велика вісь якого – відрізок 1272, а мала вісь – відрізок 41101 (діаметр кола). За величинами цих осей та проміжних точок аркуша побудована дійсна величина еліпса 10407010010.


а б

 

Рисунок 5.1


Розріжемо циліндр по твірній 7А (72А2) і побудуємо розгортку його нижньої (зрізаної) частини. Для цього праворуч вздовж осі ОХ відкладаємо 12 рівних частин, які дорівнюють величині відстані між двома сусідніми точками по основі циліндра (величину хорди). Від кожної точки треба відкласти величину частини відповідної твірної і сполучити отримані точки плавною лінією. На рисунку побудова твірних здійснена з використанням фронтальної проекції і показана стрілками.. Приєднавши до точки 10 розгортки вертикально розміщений еліпс та у будь-якому місці основу, отримаємо повну розгортку зрізаної (нижньої) частини циліндра з нанесенням на її поверхні лінії зрізу та фігури перерізу.

 

 

Побудова розгортки конуса

Конус, як і циліндр, відноситься до розгортних поверхонь, тому його розгортка будується аналогічно розгортці циліндра. Для цього бічна поверхня також апроксимується (замінюється) вписаною в нього поверхнею піраміди. На рис.5.2,а показано побудову повної та зрізаної частини прямого кругового конуса, зрізаного площиною Г. Кут розгортки бічної поверхні конуса точно визначається за формулою α = r ·360º /L, де r – радіус основи конуса, а L – довжина твірної.

Аналогічно як і в п. 5.1 побудовані проекції фігури перерізу, а дійсна величина її побудована заміною площин проекцій. Побудова розгортки бічної поверхні конуса способом апроксимації здійснена так. Коло основи конуса поділене на 12 рівних частин; через точки поділу проведені додаткові твірні (І1S1 та S1VII1, II1S 1 та S1VIII1 і т. д.) При перетині фронтальних проекцій цих твірних з фронтальним слідом січної площини отримано послідовно точки 32, 42, 52, 62, 72, горизонтальні проекції яких знаходимо по лініях зв’язку.


 

 

а б

Рисунок 15.2


На вільному полі аркуша з довільно взятої точки S проведемо дугу радіусом, рівним довжині твірної, де на ній відкладемо дванадцять хорд і отримаємо послідовний ряд точок І, ІІ,....ХІІ. Утворений сектор представляє розгортку бічної поверхні конуса. Розріжемо бічну поверхню по твірній VIIS і відкладемо на ній довжину правої окреслюючої твірної VII2S2 по обидва боки краю сектора, а на середині відстань І2S2. Решту точок 3, 4, 5, 6, 7 на розгортці – відкладаючи дійсні величини відрізків твірних, взятих з окреслюючої твірної І2S2. Сполучаємо отримані точки плавною лінією. Приєднавши до точки 1 в сторону S еліпс великою віссю, а до точки I - основу, отримаємо розгортку нижньої (зрізаної) частини поверхні конуса за умови, що верхня ліва його частина умовно відкинута.

На рис. 5.3 наведено ще один приклад побудови розгортки конуса, зрізаного фронтальною площиною Ф. Ця площина відтинає від поверхні конуса гіперболу, тому дійсна величина фігури перерізу спроектується на фронтальній проекції конуса в дійсну величину. Побудова фронтальної проекції фігури перерізу на рис.5.3,а здійснена аналогічно до попередньої лекції. (рис 4.7). Для наближеної розгортки бічної поверхні конуса (рис.5.3,б) коло його основи також поділене на 12 рівних частин. Таким чином, ми замінюємо конічну поверхню 12-гранною пірамідою. Розріжемо конус по найближчому до спостерігача ребру SA і побудуємо розгортку за аналогічним з рис. 5.2 способом. Найвищу точку 3 відкладаємо на крайній твірній SA по обидва боки розгортки, замірявши відстані S2¢32¢ на фронтальній проекції. Для побудови на розгортці точки 4 та симетричної їй 5 через S1 та 41 горизонтальної проекції проведені допоміжні твірні, які побудовані також на розгортці: на них відкладена відстань від S2 до 52¢. Побудова точок 6, 7 та 1, 2 здійснена також з використанням допоміжних твірних і зрозуміла без пояснень. До точки 3 на розгортці приєднана вершиною (точкою 3) фігура перерізу, яка взята з фронтальної проекції конуса. До точки Х приєднана частина основи, яка залишилася після перетину конуса площиною Ф.


а б

Рисунок 5.3


© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти