ВІКІСТОРІНКА
Навигация:
Інформатика
Історія
Автоматизація
Адміністрування
Антропологія
Архітектура
Біологія
Будівництво
Бухгалтерія
Військова наука
Виробництво
Географія
Геологія
Господарство
Демографія
Екологія
Економіка
Електроніка
Енергетика
Журналістика
Кінематографія
Комп'ютеризація
Креслення
Кулінарія
Культура
Культура
Лінгвістика
Література
Лексикологія
Логіка
Маркетинг
Математика
Медицина
Менеджмент
Металургія
Метрологія
Мистецтво
Музика
Наукознавство
Освіта
Охорона Праці
Підприємництво
Педагогіка
Поліграфія
Право
Приладобудування
Програмування
Психологія
Радіозв'язок
Релігія
Риторика
Соціологія
Спорт
Стандартизація
Статистика
Технології
Торгівля
Транспорт
Фізіологія
Фізика
Філософія
Фінанси
Фармакологія


Азотування і нітроцементація сталі.

Загрузка...

Азотуваннямназивають дифузійне насичення азотом по­верхневого шару сталевих деталей. Мета азотування — істотно підвищити твердість, зносостійкість, границю витривалості й корозійну тривкість.

Деталі азотують після повної механічної й термічної обро­бок в атмосфері аміаку, який подається з балонів у герметичні реторти, де укладені деталі. Реторти нагрівають у печах переважно до температури 500...600 °С протягом 24...60 год і довше. В результаті поверхневий шар насичується азотом на глибину 0,3...0,6 мм. Переходити до вищих температур не завжди доцільно , бо коагулюють нітриди, що знижує твердість азотованого шару . Аміак під дією нагрівання розкладається на поверхні деталей на атомарний Нітроґен і Гідроґен .

Азатований шар, сформований під час насичення, не вимагає додаткової термічної обробки як у випадку цементації. Гли­бина азатованого шару залежить від температури й тривалості процесу, а також від хімічного складу сталі. Зі збільшенням температури й тривалості азотування глибина азатованого шару зростє . Зважаючи на порівняно низьку температуру процесу, швидкість азотування на порядок менша за швидкість цементації.

Щоб підвищити поверхневу твердість й зносостійкість, процесу проводять одноступінчасто при температурі 500...520 °С, а пришвидшення процесу інколи вдаються до двоступінчастого азотування — спочатку при температурі 500...520 °С, а згодом і при 560...600 °С, що скорочує тривалість процесу без помітного зменшення твердості.

Осердя азотованих деталей повинно мати підвищену міцність і пластичність, з огляду на що їх попередньо гартують і відпускають при температурі 600...675 °С, вищій за температу­ру азотування. Тому структура сорбіту, що утворилась в проце­сі термообробки, не змінюється під час азотування. Заготовки зі структурою сорбіту можна обробляти лезовим інструментом і наприкінці шліфувати.

Щоб підвищити корозійну тривкість, леговані та вуглецеві сталі азотують при температурі 650... 700 °С. Висока температура дає змогу скоротити процес до декількох годин. Тут не потрібна вели­ка глибина азотування, а твердість не має істотного значення.

Переваги азотування порівняно з цементацією:

— вища твердість і зносостійкість поверхневого шару;

— перелічені властивості зберігаються до температур 450...500 °С проти 200...225 °С у випадку цементації.

Недоліки:

— значна тривалість процесу;

— висока вартість застосовуваних для азотування легова­них сталей

Нітроцементація — насичення їх в газовому середовищі. Мета нітроцементації — підвищення твердості, зносостійкості та втомної міцності деталей.

Одночасне насичення вуглецем і азотом відбувається швид­ше, ніж послідовне насичення кожним з цих елементів окремо. Співвідношення вуглецю й азоту в насичуваному шарі регулю­ють, змінюючи склад середовища й температуру процесу. Що нижча температура, то більше насичення поверхневого шару азотом і менше вуглецем.

Нітроцементацію здійснюють у суміші газу, яким навуглецьовують, й аміаку при температурі 850...870 °С протягом 2...10 год. ї широко застосовують в автомобільній промисловості для по­верхневого зміцнення зубчастих коліс і валів, виготовлених із хромистих і хромомарганцевих сталей. Після насичення деталі гартують і піддають низькотемпературному відпуску. Коли ба­гато залишкового аустеніту, деталі після гартування обробля­ють холодом. Порівняно з ціануванням нітроцементація дешев­ша й безпечніша.

27. Відпуск сталі. Вплив на структуру і властивості.

Процеси перетворення мартенситу і залишкового аустеніту при нагрі­ванні називаються відпуском загартованої сталі. Відпуск залежно від одер­жаної мікроструктури називають низьким, середнім або високим.


Після низького відпуску (12О-250°С) у загартованій сталі зберігається мікроструктура мартенситу. Після середнього відпускання (350-500°С) утво­риться тростит відпуску, після високого (500-650°С) — сорбіт відпуску. Останні дві структури (тростит і сорбіт) розрізняються лише за ступенем ди­сперсності цементитних часток і механічних властивостей.

У ферито-цементитних сумішах, які утворюються при розпаді переохо­лодженого аустеніту, цементит має пластинчасту форму, а при розпаді мар­тенситу — зернисту.

Зміна структури при нагріванні (відпусканні) обумовлює і зміну механі­чних властивостей сталі. Підвищення температури відпуску призводить до зниження твердості і міцності й до підвищення в'язкості та пластичності. На твердість і міцність ферито-цементитних сумішей форма цементиту істотно не впливає. Однак пластичність і в'язкість сталі, що має зернисту форму це­ментитних часток, більш висока, ніж сталі із пластинчастою формою цемен­титних часток.

На міцність і твердість істотно впливає розмір цементитних часток та їхня кількість. Зі збільшенням кількості та зменшенням розмірів часток про­цес переміщення дислокацій, погіршується, відбувається їхнє гальмування. Це призводить до підвищення міцності та твердості сталі. Зменшення кілько­сті та дисперсності, навпаки, знижує твердість і міцність. От чому сталь, що має структуру троститу, характеризується більш високими твердістю та міц­ністю в порівнянні зі сталлю, що має структури сорбіту і перліту.

Відпуск є кінцевий вид термічної обробки, який призначається для ство­рення в сталі певної структури в цілях отримання заданих якостей.

Таким чином, відпуском називають технологічний процес термічної обробки, який полягає в нагріванні загартованої сталі до певної температури, яка не перевищуює точки Аси витримці при ній і подальшим охолодженням до кімнатної температури.

В загартованій сталі при її нагріванні проходить розпад твердого розчи­ну з утворенням мікроструктур, які мають певні механічні властивості. В за­лежності від отриманої мікроструктури і згідно механічних властивостей за­гартованої сталі, які набуваються під час її наступного нагрівання до певних температур, розрізняють низький, середній і високий відпуск.

Низький відпуск проводять шляхом нагрівання загартованої сталі до те­мператури 120-250°С. При даних температурах утворюється структура від­пущеного мартенситу, дещо знімаються внутрішні напруження і зберігається властива мартенситу висока твердість. Цьому відпуску підлягають деталі, які працюють в умовах тертя і зносу, цементовані (шестерні, вали коробок пере­дач, диски фрикційних механізмів та ін.), а також ріжучі і вимірювальні ін­струменти. Температура відпуску вибирається у вказаних рамках в залежнос­ті від призначення виробу. Наприклад, ріжучий і вимірювальний інструмент в цілях збереження високої твердості і зносостійкості відпускають при тем­пературах

15О-200°С. Цементовані вироби, твердість яких повинна бути в рамках НКС 50-60, відпускають при температурах 200-220°С.


Інколи на виробництві, особливо інструментальному, використовують гартування з самовідпуском. Температуру самовідпуску в цьому випадку ви­значають по кольорам побіжалості, які представляють собою кольори тонкої плівки окисла, яка утворюється при температурах: 220°С — світло-жовтий; 255°С — коричневий; 285°С — фіолетовий; 295-3І0°С -темно-синій; 330°С — темно-сірий. З підвищенням температури відпуску збільшується товщина оксидної плівки і змінюється її забарвлення.

Середній відпуск проводять шляхом нагрівання загартованої сталі до температури 350-500°С. В результаті середнього відпуску сталь набуває структури троститу відпуску, твердість помітно знижується, при цьому збері­гається висока міцність і пружність сталі. Такому відпуску підлягають пру­жини, ресори, торсіонні та інші пружинні елементи. Середній відпуск здійс­нюється в електричних печах чи в розплавах солей.

Високий відпуск проводять при температурах 500-650°С. При цьому сталі набувають структуру сорбіту відпуску, яка поєднує високу в'язкість і пластичність з достатньо високою твердістю і міцністю. При високому відпу­ску майже повністю знімаються внутрішні напруження. Високий відпуск ви­користовується для деталей, які працюють при великих ударних і знакозмін-них навантаженнях (шатуни, поршні і силові шпильки двигунів).

Термічна обробка, яка складається з гартування і подальшого високого відпуску з метою отримання мікроструктури сорбіту відпуску, в техніці отримала назву покращення. Покращенню піддають середньовуглецеві (0,3-0,6%С) конструкційні і леговані сталі, від яких вимагають високої межі теку­чості ат, межі міцності ав, ударної в'язкості а„.

Для деяких сталей, які містять леговані елементи Сг, XV, V, Мо, темпера­турні інтервали розпаду мартенситу зміщуються в бік підвищення темпера­тури, тому і вказані інтервали для різних видів відпуску також зміщуються вгору.

Хонінгування. Суперфініш.

При виготовленні важливих деталей для сучасних високошвидкісних і важко навантажених машин до якості обробки їх ставлять високі вимоги. В ряді випадків шліфування не відповідає цим вимогам, тому застосову­ють методи обробки, які забезпечували б більш високу якість поверхні. З таких методів найпоширенішими є хонінгування, суперфініш,

Хонінгуванням називають метод чистової обробки за допомогою дрібнозернистих абразивних брусків, які вставлені в спеціальний пристрій (хонінгувальну головку). Разом з нею вони здійснюють головний обер­тальний рух і поступальне переміщення вздовж осі, що є рухом подачі Хонінгувальна головка розсувна. Під дією пружин бруски в процесі роботи притискаються до оброблюваної поверхні. Застосовую­чи хонінгування, можна зробити отвори з точністю ІТ7...ІТ6 і шорсткіс­тю до Rа = 0,04, зменшити овальність і конусність до 5 мкм.

Суперфініш - це метод дуже тонкої чистової обробки з метою утво­рення особливо гладенької поверхні. Виконують його за допомогою двох дрібнозернистих абразивних брусків, поєднуючи обертальний та по­ступальний рухи вздовж осі оброблюваної деталі і коливальний (осцилюючий) рух брусків Суперфінішна головка за допо­могою встановлених у ній абразивних брусків знімає з деталі /гребінці шорсткості, що залишилися від попередньої обробки. Роботу ведуть з ін­тенсивним змащенням. Коли в процесі обробки гребінці згладжуються, мастило утворює безперервну плівку, тиск бруска недостатній, щоб її прорвати, і різання припиняється. Суперфінішем досягають шорсткості поверхні Rа - 0,02.

Загрузка...

© 2013 wikipage.com.ua - Дякуємо за посилання на wikipage.com.ua | Контакти